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Cutting tool wear monitoring in machining operations has been an active area

of research for nearly last two decades. Cutting tool wear plays an important

role in deciding economic strategies, product quality, tooling cost, tool-changing

cost, rejection of products and productivity. Metal cutting processes are in

general non-linear and stochastic in nature. It is therefore difficult to represent

them as a mathematical model and they usually require simplifying

assumptions. As a result, such models are not capable of representing real metal

cutting process. For an automated industry, all the machining input parameters

(cutting speed, feed rate, depth of cut) are controllable except cutting tool

condition. Major problem in the machining process is cutting tool wear

prediction. In this research work an attempt has been made to develop neural

network models using sensors’ signals to predict the health of a cutting tool.

Properties of signals from the sensors depend on many factors such as

machining conditions (cutting conditions), workpiece material, and cutting tool

geometry. Apart from the complexity of the process, signals from the sensors are

disturbed for many reasons: outbreak at cutting edges, chatter (i.e. self-exited

vibrations), sensor non-linearity, noise of digitizers, crosstalk effects between

sensor’s channels, etc.

An intensive investigation has been carried out in the area of Tool Condition
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Monitoring (TCM) system, covering various metal cutting processes such as

turning, milling, drilling, grinding, etc. However, none of these systems have

been accepted universally by shop-floor engineers. There is still a need for a

reliable, universal TCM system, which is suitable for industrial applications. A

good cutting tool condition monitoring system should be characterized by fast

detection of impact or collision, (i.e. unwanted movement between tool and

workpiece, or tool and any component of the machine tool), tool chipping

(cutting edge breakage), and gradual tool wear caused by abrasion due to

friction between flank face of cutting tool and workpiece. A human operator can

detect condition of a cutting tool by sensing noise (or sound) generated during

machining, observation of chip color (visual), presence of smoke (smell), surface

roughness of workpiece and so on.

Cutting tool wear sensing techniques are broadly classified into two categories:

direct and indirect. Direct methods are those that utilize effect caused directly by

tool wear, and measured by using optical microscope, radioactive, or camera

vision. However, direct methods of measuring tool wear have not been easily

adaptable for shop floor applications. They are not suitable for on-line condition

monitoring. However, they can be easily applied to off-line measurements

which require more time. Indirect tool sensing techniques generally employ one

or more of the responses of a machining process like temperature, cutting force,

vibration, surface finish, acoustic emission, motor current and so on. These

indirect methods can be implemented for an unmanned automated industry;

however they have a lower sensitivity compared to direct methods. Availability

of computational power and reliability of electronics have lately helped in the

development of a reliable tool condition monitoring system using indirect

methods. A major problem in TCM system is selection of a proper sensor and its

location. Sensors have to be placed as close as possible to the target location

(close to the tool tip). Hardware components of a cutting tool wear monitoring



Synopsis iv

system have been developed to a reasonable satisfaction but software

components need to be improved significantly. In view of this, a multi-sensor

approach has been proposed to monitor the condition of a cutting tool.

Accurate and repeatable physical simulations of a flank wear as well as chipped

off cutting edge of a tool is a difficult task. Hence, in this work an attempt has

been made to create artificial flank wear and chipped off cutting edge using

Electrical Discharge Machining (EDM) process in a controlled manner. Use of

such tool results in very close to real life flank wear and chipping failure

experienced by a tool during machining process. Artificially created flank wear

and chipped off cutting edge are more uniform and well defined while in real

life they are not so uniform, and non-uniformity always persists. This difference

would definitely lead to the deviation between the results obtained by these two

classes of tools (tool worn out during normal cutting and worn out tool created

by EDM). Using this (artificial worn out) cutting tool, experiments are carried

out on a CNC GILDMEISTER CTX 400 Serie 2 turning centre for various

machining conditions using EN-8 steel as workpiece.

In order to study the dynamic behaviour of cutting tool, Finite Element Analysis

(FEA) has been carried out by using ANSYS. In this analysis, a solid model of a

cutting tool has been developed. The natural fundamental frequencies and

modes of vibration have been analysed by using free vibration concepts (modal

analysis).

Experiments are conducted on EN-8 steel using DNMG 150608 insert with Seco

tool holder PDJNR 2020 K15 without cutting fluid. The tool is instrumented

with strain gauges (TML-120Ω) and two accelerometers (NP-3331-ONO-SOKKI).

The strain gauge signals are taken to a PXI system and accelerometer signals are

taken to an ONOSOKKI FFT analyzer. The PXI system is equipped with a
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Wheatstone bridge configuration and an amplifier. By using design of

experiments (DOE) theory, the analysis of variance (ANOVA) has been carried

out for different machining input parameters and each parameter has been

tested with the level of significance at 99% confidence limit. Empirical models

have been developed with respect to machining parameters and the predicted

results have been compared with the experimental results. From the

experimental results, it is observed that the magnitude of strain and amplitude

of vibration increase with depth of cut and feed rate, and decrease with cutting

speed. The amplitude of vibration (acceleration, g) and amplitude of strain are

substantially more for a chipped off tool compared to a flank worn-out tool.

One of the aims of this research work is to enhance the feature extraction

procedure from the signals of the sensors (accelerometers and strain gauges).

Time domain and Power spectral analysis are carried out and an Artificial

Neural Networks (ANN) back propagation algorithm is used to classify and

estimate the wear parameters. A real condition monitoring system is expected to

replace the knowledge and experience of a skilled machine operator. This can be

achieved through proper learning and training of ANN. Neural networks based

condition monitoring systems employ feed forward multi layer perceptrons

(MLP). The behaviour of neural networks architecture depends upon various

parameters like input patterns to networks, target vectors, number of layers,

number of neurons, activation function, training function, number of epochs and

so on. Back-propagation training algorithms were tried. Training and validation

results from various architectures are presented and a comparison is made. An

attempt has also been made to develop an ANN algorithm that can identify

whether a tool has flank wear or a chipping failure. Cutting tool vibration and

strain signals are found to carry useful information for predicting flank wear as

well as chipping failure. For this purpose, four statistical moments are extracted

from time domain data and then used in ANN analysis as the input data.
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Similarly frequency domain analysis has been carried out and extracted features

are fed in to ANN as input data for training. After training, the best architecture

of ANN has been chosen by trial and error analysis and then the same

architecture of ANN has been tested with new experimental data. It is observed

that the response (output) of ANN is good enough to classify both, the flank

wear and chipping failure at different levels. On the basis of the condition of the

cutting tool this neural network model may be further employed to develop an

adaptive feed back system to control the machining process.

This research work focuses on the development of instrumentation system to

monitor the condition of cutting tool in on-line, development of the method to

artificially create flank wear and chipped off cutting edge, and to identify the

state of a cutting tool on-line. This thesis comprises following eight chapters.

• Chapter 1 discusses introduction of condition monitoring systems and its

applications in the area of cutting tool condition monitoring system.

• Chapter 2 deals with literature survey. In this chapter various indirect

TCM systems have been discussed. Based on the literature survey, the

present thesis is placed in an appropriate context and objectives of the

work have been identified. It is decided to develop a sensor based tool

condition monitoring system to identify the cutting tool condition.

• Chapter 3 deals with various flanks wear levels and their maximum

limitation; selection of tool material with respect to workpiece has also

been discussed. Based on the understanding of flank wear and chipping

mechanism, a systematic procedure has been formulated to create an

artificial flank wear (including nose wear) and chipping failure by EDM

process.

• Chapter 4 details about the experimental design, selection of machine tool

and selection of machining parameters according to the design of
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experiments criterion. It also includes sensors and instrumentation

systems, data acquisition and retrieval systems namely FFT analyzer and

NI-SCXI strain gauge module.

• Chapter 5 discusses the empirical models development and analysis using

ANOVA. These models are validated with the experimental results. In this

chapter flank wear as well as chipping failure analysis are compared and

it is observed that cutting tool with chipping failure vibrates more when

compare with flank wear tool.

• Chapter 6 discusses the development of ANN models. Three ANN models

have been developed to predict the flank wear and chipping failure for

various machining conditions. These models are validated with

experimental results.

• Chapter 7 discusses conclusions, major results and contributions of this

work. It also suggests a few areas of future study.

This system can be useful to on-line predict the condition of a cutting tool which

would help in improving the quality of the products. The experimental, empirical

and ANN results are promising to implement TCM system in an industry.
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Chapter 1

Introduction

1.1 Condition monitoring

Condition monitoring and diagnostics of machines is a subject of increased

importance in the course of progressive automation. It is essential in order to

ensure operation within design consideration and anticipate problems in time,

so as to prevent catastrophic failures. It is concerned with extracting information

from cutting tools and machine tools to indicate their conditions, and to enable

them to be operated smoothly throughout their serviceable life. Manufacturing

industries mainly pertaining to computer integrated manufacturing system,

robot controlled machining system, have undergone tremendous changes in the

past three decades. Today customer demands high quality products for lowest

possible price. In order to meet such demands and to face global competition,

modern industries are aiming towards achieving high dimensional accuracy.

Manufacturers are focusing on the technical aspects of , how to achieve

uninterrupted automated machining for longer duration with least human

supervision. Cutting tool wear condition monitoring is one such important

aspect that needs to be looked into in automated cutting processes and

unmanned factories. In a metal cutting operation, a major hurdle in realizing

total automation is cutting tool state prediction and consequently maintenance.

1
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Cutting tool condition monitoring can help in on-line realization of the tool

wear, tool breakage, and workpiece surface roughness [1]. Worldwide

investment in metal cutting industries remains steady or continues to increase

year by year, and it decides economic condition or wealth of the country [2].

Researchers and engineers have been trying to evolve a cutting tool condition

monitoring system with high reliability [3]. There is a need for reliable,

universal cutting tool condition monitoring (TCM) system, which is suitable for

industrial applications. Various sensing techniques [4] have been reported

which deal with detecting edge chipping, fracture, tool wear and surface finish.

Various sensors were adopted in the area of metal cutting tool condition

monitoring system namely, touch sensors, power sensors, acoustic emission

sensors [5, 6], vibration sensors, torque sensors, force sensors, vision sensors and

so on . In any automated process, sensors and their signal interpretation play an

important role. The processing and analysis of signals is important because it

improves production capacity, reliability, reduced downtime and improved

machining quality [7, 8, 9]. Sensors and their utilization were implemented in

many areas like machine tool manufacture, automotive industry, tool

manufacturing and so on. Byrne et al [10] reported that 46% of the sensors

monitoring systems were fully functional, 16% had limited functionality, 25% of

the systems were non functional due to technical limitations and 13% were

replaced by or switchover to alternate systems.

In sensors based system, the accurate prediction of cutting tool condition using

signal responses is an important aspect. In many cases wrong interpretation of

the sensor signals by an operator leads to the wrong decision to switch off the

machine tool which affects the quality of the product as well as production rate.

The training of the personnel also plays a vital role in successful implementation

of tool condition monitoring systems. Now-a-days, modern machines and
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machine tools are complex systems. It is difficult to monitor each element or

each system without the addition of numerous sensors. If number of sensors are

more, the difficulty further compounds to handle a large number of data, their

interpretation and analysis.

Generally, machining processes are non-linear and stochastic in nature, and it is

hard to build a mathematical model. Such mathematical models are based on

suitable assumptions and they may not be matching with real world metal

cutting process. An intensive research has been carried out related to TCM

systems, covering various metal cutting processes such as turning , milling ,

drilling and grinding, over the past two decades or so [11]. A good cutting tool

condition monitoring system [23] should be characterized by fast detection of (a)

impact or collisions, (i.e. unwanted movement between tool and workpiece, or

tool and any other component of the machine tool), (b) tool chipping (cutting

edge breakage), and (c) gradual tool wear (crater and flank) caused by abrasion

between cutting tool and workpiece (flank wear) and cutting tool and chip

(crater wear), respectively.

Tool wear sensing techniques are broadly classified into two categories: direct

and indirect as shown in Table 1.1. The direct tool wear monitoring methods can

be applied when cutting tools are not in contact with the work piece [7, 12] like

radioactive, microscope, camera vision and so on. However, direct methods of

measuring tool wear have not been easily adaptable for shop floor application.

They are not suitable for on-line condition monitoring system however they can

be easily applied to off-line measurements and it consumes more time. Indirect

tool sensing methods use relationship between cutting conditions and response

of machining process which is a measurable quantity through sensor signals

output (such as force, acoustic emission, vibration, or current) and may be used

to predict the condition of the cutting tool. These indirect methods are used
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Table 1.1: Tool wear sensing methods.

Direct Methods Indirect Methods

Electrical Resistance Torque and power

Optical Measurements Temperature

Radio active Vibration and Acoustic Emission

Contact sensing Cutting forces and Strain measurements

extensively by various researchers and the detailed analyses have been carried

out in the past two decades. These indirect methods can be implemented on to

an industrial problem, but they have a lower sensitivity compared to direct

methods. Nowadays, availability of computational power and reliability of

electronics help in the development of a reliable condition monitoring system by

using indirect methods. However, a problem in TCM is selection of proper

sensor and its location. The sensors have to be placed as close as possible to the

target location (close to the tool tip) being monitored.

It is interesting to note that an indirect TCM system [7] consists of four steps:

(i) collection of data in terms of signals from sensors [30] for assessing cutting

force, vibration, temperature, acoustic emission and/or motor current, (ii)

extraction of features from the signals, (iii) classification or estimation of tool

wear using [84] pattern recognition, fuzzy logic, neural networks, or regression

analysis, and (iv) development of an adaptive system [87, 98, 96] to control the

machining process based on information from the sensors.

There have been many investigations on tool wear based on periodic

measurements of wear levels using optical microscope. In the present study, an

artificial wear has been created (externally) using Electric Discharge Machining
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(EDM) process in a controlled manner. This is similar to a real wear (Flank and

Chipping failure) experienced by the tool during machining process. Artificially

created wear is neat and clean (Figure3.6) while on-line actual wear is irregular.

Because of irregular shape of wear it is difficult to judge or measure level of

severity of wear. In artificially created wear, the bulk temperature during EDM

is very small compared to on-line tool wear during cutting. It may lead to very

fine micro-cracks while on-line tool wear, during metal cutting, the tool is

subjected to reasonably high temperature and quenching it coolant is used

resulting in micro-cracks. In Artificially created wear, the final conditions of the

tool exist in the beginning itself while in on-line tool wear it has to be simulated

or guessed which will be an involve approximation. Using this (artificially

worn) cutting tool, cutting experiments are performed and signals are captured.

1.2 Objectives of the Thesis

In actual metal cutting experiments, the tool wear geometry generated is not

uniform hence its dimensions have to be averaged out. Artificially created worn

out tool may also have thermal defects like micro-cracks and thermal residual

stresses [13]. The concept of artificially creating flank wear on the tool can be

applied for non-uniform shape and size provided they are mathematically

representable. However, while interpreting the captured signals, this difference

should be kept in mind. Therefore, for purpose of algorithm development and

calibration it was decided to artificially create the uniform flank wear of the

desired averaged dimension on the tool using EDM machine.

This created wear is well defined shape and easy to measure (using USB port

microscope). In this thesis two sets of sensors (strain gauge and accelerometers)

were used to monitor the cutting tool condition. These were placed very close to

cutting tool tip. The aim of the thesis is to develop a systematic feature
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extraction procedure from the output responses (accelerometers and strain

gauges) of a machining process. Artificial Neural Network (ANN) schemes are

developed for classification or estimation of tool wear. The output from the

sensors, after necessary processing is fed as input to the networks. Back

propagation and probabilistic neural networks have been designed. Their

efficiency has been investigated for various internal architectures, activation

functions and learning algorithms. Major contributions of this work are briefly

mentioned as follows:

• Development of systematic procedure to create an artificial tool wear

(externally) by using EDM process.

• Development of experimental design and instrumentation systems to

predict the flank wear and chipping failure level for different machining

conditions which is very helpful to predict the condition of a cutting tool.

• FEM analysis and solid models are developed using ANSYS to study the

dynamic characteristics of the cutting tool, and workpiece, and validated

with the experimental results.

• Using the concept of DOE, the empirical models had been developed to

predict the flank wear and chipping failure levels, and validated the same

with experimental results.

• ANN models have been developed and these models were trained and

validated with experimental data to predict the flank wear level and

chipping failure.

1.3 Constraints and limitations

The present study has focused on a specific application and its limitations are

listed below
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• The study is limited to DNMG inserts cutting tool for turning operation.

• The feature of the selected tool DNMG inserts is that it ensures that crater

wear does not take place because of chip breaker mechanism in the tool

system.

• This DNMG inserts experiences only flank wear and chipping failure.

• The study of interaction between flank wear and chipping failure in the

tool was not in the scope of the simulated Artificial Neural Network (ANN)

experiments.

• As flank wear and chipping failure are considered simultaneously for the

first time, FEM analysis and ANN applications to DNMG tool failures give

new directions and confidence for future studies.

• The results of this study with DNMG inserts fitted with cutting tool can not

be extended for monitoring non grooved inserts or solid cutting tool where

crater wear is significant. Theses two studies have to be carried out totally

independent because of different designs of the tool.

• To find out any possible interaction between flank wear and chipping

failure, it is necessary to apply fracture mechanism because of creation of

notch irregularities and resulting stress raisers and stress concentrations by

real life flank wear. The geometry of these notches and stress raisers will

have to be simulated and considered.

• Initiation of surface crack or crack at the sub-surface and crack growth in the

cutting tool in the presence of fatigue loading and dynamic stresses need to

be considered in the study.



Chapter 2

Literature survey

2.1 Literature survey

The vast amount of literature in this field suggests that a variety of process

parameters in the metal cutting environment can be tapped and used to predict

the cutting tool-state. In this chapter, following typical methods are discussed

along with their correlation to tool wear during experimentation.

• Acoustic emission (AE),

• Cutting forces (static and dynamic),

• Vibration signature (accelerometer signals),

• Cutting tool temperature, and

• Miscellaneous method such as ultrasonic, optical measurements, workpiece

surface finish measurements, workpiece dimensions, stress/strain analysis,

spindle motor current and so on.

2.1.1 Acoustic emission

In metal cutting operations,workpiece undergoes plastic deformation when the

cutting tool penetrates in it. Due to deformation (dislocation movements),

8
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localised strain energy is released spontaneously in the form of acoustic

emission. In addition to metal cutting, acoustic emission are also released in

many other practical situations such as phase transformations, friction

mechanisms (tool-workpiece contact), crack formation or fracture or fracture

extension and so on. In the literature [14, 9, 15, 16, 17], various researchers have

employed different methodologies and sensors for capturing signals and their

interpretation. Out of many methods, some important methods are discussed

below.

Choi et al. [16] developed a real-time TCMS for turning operations using AE and

cutting force signals. Two sets of experiments were conducted using tungsten

carbide insert tips with one set slotted by wire EDM to accelerate fracture while

the second was brazed to the workpiece to induce tool breakage. The recorded

data was analysed through a fast block-averaging algorithm for features and

patterns indicative of tool fracture, and it showed the occurrence of a large burst

of AE at tool breakage. Similar work conducted by Jemielniak and Otman [17]

used a statistical signal processing algorithm to identify the root mean square

(RMS), skew and kurtosis of the AE signal in the detection of catastrophic tool

failure. Cutting force measurements recorded simultaneously were used as

reference signals to indicate when the failure actually occurred. Inspection of the

test results indicated the skew and kurtosis to be better indicators of

catastrophic tool failure than the RMS values.

Kakade et al. [18] used AE analysis to predict tool wear as well as chip condition

by selecting AE parameters (ring-down count, rise time, event duration,

frequency and event rate) recorded simultaneously with the corresponding

flank wear land length measured at the selected intervals. Analysis of the results

concluded that AE signals could distinguish clearly the cutting actions of a

sharp and a worn out or a broken tool.
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Zheng et al. [19] presented an intrinsic method for AE sensing based on an optic

fiber sensor. The sensor consisted of two distinct parts: the sensing element and

an interferometer. The sensing element principally was used to produce a shift

of phase in the light transmitted through the optical fiber allowing the

interferometer to detect and measure the photo elastic modulations in the light

intensity. Preliminary drilling and milling operation tests were conducted and

the AE signal measured using an optic fiber sensor and a commercially available

PZT AE sensor. The obtained results were compared and these showed a

reasonable degree of agreement.

Knig et al. [20] performed test cuts to detect fracture and/or monitor the

condition of small drills using AE features. They circumvented the time

consuming and cost-intensive signal processing usually accompanying AE

applications by employing simple process-adapted band pass filters, a rectifier

and a low pass filter to convert the normally high frequency AE signals to low

frequency signals. Drilling operations were performed and a ceramic knock

detector sensor designed for industrial application was used to measure AE

signals. The recorded AE-RMS was plotted for the number of holes that each

drill performed before it failed. Inspection of their plots showed that at the

closing phase of tool life (i.e. tertiary phase of tool wear), the RMS value

increased dramatically. The rise, one could argue, was a direct response to the

fractured tool. Hence Knig et al. [20] used this as a prescribed threshold which

the RMS for normal operating drills should not exceed. This method however

was found to be sensitive to tool chipping.

Blum and Inasaki [5] performed experimental tests to determine amongst other

things, the influence of flank wear on the generation of AE signals. They were

particularly interested in the use of the AE mode, a parameter describing the



Literature survey 11

characteristic of the cutting process as the DC component of the measured

signal. Experiments were conducted from which AE and the cutting forces were

recorded simultaneously for pre-ground and sharp tool inserts. The ensuing

analysis involved studying the effects of the cutting conditions on the chosen AE

features and tool flank wear. With knowledge of the former, it was possible for

its influence in flank wear interpretation not to be misconstrued. Inspection of

the obtained graphs for AE-mode/cutting forces and flank wear for various

cutting speeds showed an indispensable correlation of AE-mode to flank wear.

A not-so-good correlation was realised with the cutting forces, as their slopes

were significantly smaller compared to the AE-mode ones that were almost

linear. This was interpreted as the flank wear length being extremely sensitive to

AE-mode. They, however, concluded that extraction of such information from

the AE signal was difficult.

Moriwaki and Tobito [21] proposed a method based on AE measurement and

analysis for coated tool life estimation. The underlying principle behind their

devised method for coated tool life estimation was that, during progressive tool

wear, the tool material changes from one substrate layer to another and emits

AE signals that could be monitored to determine tool life. An experimental test

rig was set up and tests were conducted on it. The AE and tool wear (flank and

crater) were measured together with the surface roughness. Typically, AE RMS

values for the recorded AE signal and the wear values (initial, middle and

tertiary stages of tool wear) were graphed on the same scale for comparison.

Inspection of the presented plots indicated a strong correlation of AE RMS

amplitude to tool wear, increasing with wear progression. Further analysis to

extract statistical features (mean, variance and the coefficient of RMS) were

performed and plots made for the complete cutting cycle. The variance was the

most sensitive to tool wear, as it had the largest amplitude in the final phase of

tool life. The recorded data was applied to a pattern recognition system and it
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performed reasonably well. Thus, by measuring the AE emitted from specially

treated coatings on a cutting tool, it was possible to identify and predict the

ensuing tool life. The only drawback to the application of this method, it could

be argued, was its exclusive use of coated tool inserts.

Roget et al. [22] carried out machining tests from which the captured AE signals

were used to predict the state of the cutting tool. They concluded that such task

could only be successfully accomplished under specific and limited conditions.

Using custom-made AE sensors, turning and milling tests were carried out with

normal grade and alloyed steels as workpiece . The parameters of AE signals

were recorded (RMS, mean and peak values). Further, statistical features such as

variance, kurtosis and skew were extracted from the recorded parameters. A

comparison of the recorded AE signals and measured flank wear curves were

carried out, and showed a remarkable similarity with the characteristic three

distinct phases depicted on both the wear-time and AE-time plots. There was a

corresponding initial rise in both curves due to the tool being engaged in

cutting. A slowing down of the wear rate reciprocated on the AE signal curve by

a much gentle slope followed this. As soon as the flank wear began to increase

to catastrophic levels, the AE signal reflected the increase and its undulations

became more erratic. They extended their method to identifying tool breakage

as well but using a milling operation instead of the test bed. Their final

conclusion was that AE provided sufficient warning of the ensuing changes in

both cutting conditions, tool breakage and tool wear.

During metal cutting , a little AE is thought to be generated compared to a larger

AE accompanying tool breakage and fracture [9, 15]. AE, it could be argued, is

dependent on the structure of the cutting material than on the cutting tool, with

its signal reflecting the behaviour of the response from the machine tool set-up

rather than the cutting tool. As the emphasis on any TCMS would generally be
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on tool wear rather than tool fracture, AE is not a suitable tool wear indicator in

monitoring applications, but could be used to detect tool tip breakage in

machining centers. On another note, Lister and Dimla [23] were of the opinion

that the most profound limiting factor in the application of AE to a TCMS does

not lie on the sensing technology, but on the ensuing analysis. This void is due

primarily to a lack of a suitable database on AE, implying that the user has to

experiment and establish the necessary trigger responses to a variety of

machining conditions thereby placing a considerable burden upon him/her.

When compared to instances where for example, the concept of lowering and

increasing the force limits might be understood, spectral analysis is not so easily

comprehended. Hence instead of the system being an aid to the operator, it

rather presents a real-time quandary. Furthermore, because AE might be

sufficiently available on the entire machining area, choosing a suitable area to

place the AE sensor to trap sufficient AE signals is debatable, as an

understanding of the AE path has to be established. A drawback to the

application of AE as an indicator of tool wear is the fact that its signals are more

sensitive to variations in the cutting conditions and noise than of the tool

condition itself. Using AE on its own to monitor the state of a cutting tool is a

difficult task [24]. AE in the view of the present author is deemed only suitable

as an additional sensing method for increased reliability for TCM. Dornfeld [25]

presented compelling reviews on the application of AE sensing techniques in

manufacturing processes particularly applied in tool wear detection in

machining.

2.1.2 Cutting force

It has been widely established that variation in cutting force can be correlated to

tool wear. In practice, application and interpretation of cutting force parameter

has been diverse with more effort concentrated on studying the dynamic
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characteristic of the cutting force signal and interpreting its relation to tool wear

levels. This can largely be attributed to the fact that force becomes important in

worn tool conditions as a result of the variations produced due to friction

between cutting tool flank and the workpiece [26, 27].

Existing force based tool condition monitoring systems (TCMSs) typically

operate independently of absolute force levels, measuring the relative change of

force that occurs as a new tool wears or when it fractures [28, 16]. Experiments

have shown that the three components of the cutting force respond differently to

the various wear forms occurring on the tool. For example, the feed force may

be insensitive to crater wear where as the feed and radial forces may be

influenced more by tool wear than the main cutting force.

Dimla [30] undertook an extensive and elaborate experimental investigation into

the development of an on-line tool wear monitoring system for metal turning

operation using cutting force measurements fused with vibration signatures. An

experimental test-bed consisting of a center lathe with a tool post dynamo meter

was used to generate cutting force data. Interrupted test cuts were conducted

using double coated carbide grade tool inserts (with chip-breaker geometry) of

the P15 type and P25 were used to machine EN-24 alloy steel. Measurements of

flank, nose and notch wear lengths were made immediately proceeding

recording the on-line data.

Purushothaman and Srinivasa [31], Yao and Fang [32] have used the cutting

force signal as input to an ANN, but implemented TCM via different neural

network architectures. Using force ratios (Fx/Fy) as an input to neural network

(MLP) and the output from this network depicting the severity of tool wear.

Having established and understood the effects the parameters had on the force

ratios, they proceeded to conduct tests using worn out tools in order to examine
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how the force ratios could be used to monitor tool. Results showed that two of

the force ratios were particularly sensitive to the accrued flank wear, thus

demonstrating potential applicability in TCM operations.

Ravindra et al. [33]developed a mathematical model for tool wear estimation

that involved carrying out turning experiments from which the wear

progression was studied and the cutting forces were modelled by a multiple

regression analysis method. The experiments indicated that the wear

propagated faster with an increase in cutting speed, and the occurrence of

inflections on the wear display curves indicated a predominant thermally

controlled mechanism. An increase in the magnitude of the components of the

triaxial cutting force was evident as the wear on the used inserts increased. The

wear-time and wear-force plots seemed to support their propositions, from

which they concluded that the experiments had provided vital evidence of a

good correlation between flank wear and radial forces.

Lee et al [34]in their quest for an on-line TCMS developed a personal computer

based fast Fourier transform software to track the dynamic cutting force signal.

Intermittent test cuts were performed on a Colchester mascot lathe at 100 mm

intervals using two workpieces and single tool insert type (P30). The cutting

forces and wear levels were measured and recorded. Subsequent analysis of the

obtained data showed that the feed and tangential dynamic force components

had a good relationship to flank wear trend.

Marques and Mesquita [35] investigated the relationship between wear of

sintered high-speed steel cutting tools and the associated cutting forces. A

wear-force model equation was established and the same was experimentally

verified. The models considered the independent influence of the flank and

crater wear. Experimental tests were conducted from which the forces were
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measured. The experiments were conducted for a short duration to establish

force-wear relationship, and longer duration cuts to observe the progressive

influence of wear on the forces. They reported a good correlation between

experimental and theoretical results.

Kim and Lee [36]developed a model of dynamic cutting forces and compared its

results with experimental data. A good agreement between theoretical limits of

stability and experimental data was reported. However, in low cutting speed

range, deterioration between the model results and the experimental results was

observed , a fact, which they attributed to the effect of built-up edge. Grabec

[1988] and Khraisheh et al [1988] have developed similar model of the dynamic

cutting force for chatter prediction.

Oraby and Hayhurst [86] developed a model for tool wear analysis in a turning

operation by force characteristics within the different phases of tool wear.

Quantification of the developed model was performed by measurement of the

vibration of radial/vertical force component ratios, accomplished through

force/wear inter-relationship formulated on simple 2-D plots. The experimental

data for these models were obtained from machining test cuts of an alloy steel

using a Colchester mascot lathe and triple-coated carbide tool inserts. These test

were carried out following a central composite design strategy comprising of 24

tests at variable cutting speeds, feed rate and depth of cut.for each test, the wear

values (nose,flank and notch) were measured and recorded.To establish a

universal rather than a case-based example of individual characteristics, they

proposed a mathematical method to quantitatively formulate the wear-cutting

force relation to the cutting speed(V), feed-rate(f) and depth of cut(d)to achieve

repeatability and reliability for practical applications. The equation below was

used and a statistical method adopted in order to obtain the constants a0, α, β, γ.
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T = a0V
αfβdγ (2.1)

From the statistical analysis, they concluded that there existed a strong

correlation between force variation and wear progression. However their model

was only applicable when the tool insert was in the primary or secondary phase

of wear.

Yao et al [38] and, Yao and Fang [39] investigated what they described as a

comprehensive TCMS which included the measurement of major and minor

flank, crater, and nose wear based on the analysis of dynamic cutting forces.

Tool wear experiments were carried out on a Colchester lathe at varying cutting

conditions using only one tool insert and workpiece type and the three

orthogonal pre-processed force components recorded. Two distinct frequency

bands were obtained in all three axes associated with a wear rate mechanism of

some sort: a low frequency band 0.5 - 1 Hz and a higher band 2.6 - 3.5 kHz.

These trends were in agreement with the recorded wear values, thus,

indispensable as a wear monitoring system.

Ghasempoor et al [40] concluded machining tests to investigate the feasibility of

using different force components for on-line TCM. Through their investigation,

they were able to correlate the feed and cutting force components to flank wear

length though it also become evident that these parameters were sensitive to

changes in the cutting conditions. Experimental observation of the effect of feed

force to cutting force ratio showed sensitivity to flank wear but was insensitive

to process changes (cutting speed and depth of cut).By combining a prior fast

tool fracture detection scheme with their developed flank wear sensing method,

it was possible to develop a new TCM strategy.

Lee et al [15] pointed out that significant variation existed in the findings of
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various researchers who attempted to correlate static cutting forces to tool wear.

Some limitations of the static force approach such as disturbances caused by

variation in workpiece material, depth of cut, and tool edge geometry were put

forward as evidence that approaches based upon static forces had not made any

significant gains. They proceeded to examine the nature and principal source of

the dynamic force frequency and its correlation to flank wear. Experiments were

carried out from which both the static and dynamic forces, and flank wear

length were measured.

An inter-relationship between the tangential and normal components of the

dynamic cutting forces have been established in Dan and Mathew [41]. In their

review, the dynamic forces are reported to fluctuate with excursions to zero and

then to higher magnitudes during cutting. A consequence of these excursions

has been onset of tool holder vibration whereby chattering at high magnitudes

often results. The measurement of the static cutting forces or the fluctuation of

its components would provide valuable information on the static behaviour of

the cutting process. The nature of the cutting process is such that it can not be

regarded as ’without deflections and instability’. The joints and couplings of the

machine tool and minute changes in the cutting conditions lead to fluctuations

in the static force components. The cyclic variations of the static forces if not

limited leads to dimensional inaccuracy of the cutting operation as chatter

results. It is difficult to predict the conditions under which it occurs or select

cutting conditions necessary to correct this phenomenon. Therefore, to get an

indication of the system fluctuations, the dynamic forces were more useful.

2.1.3 Vibration signatures (Accelerometer signals)

Vibrations are produced by cyclic variations in the dynamic components of the

cutting force. Usually, these vibrational motions start as small chatter
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responsible for the serrations on the finished surface and chip thickness

irregularities. Mechanical vibrations generally result from periodic wave

motions. The nature of the vibration signal arising from the metal cutting

process is such that it incorporates facets of free, forced, periodic and random

types of vibration. Direct measurement of vibration is difficult to achieve

because its determining characteristic feature, the vibration mode is frequency

dependent. Hence, related parameters such as the rate at which dynamic forces

change per unit time (acceleration) are measured and characteristics of the

vibration derived from patterns obtained.

Dimla and Lister [42] presents a detailed investigation of progressive tool wear

results obtained during turning operation. Dry cutting was conducted using P15

and P25 tool inserts from which the three principal components of vibration

signal were obtained. A tool life picture was constructed in both time and

frequency domains for each vibration component using three tool wear form

measurements (flank, nose and notch). The accumulative sum total power of the

spectra signal was used to interpret the time domain characteristics while

spectra and contour plots described the frequency characteristics. The

accumulative power features were ineffective in gradual tool wear monitoring

but reasonable at chipping/fracture detection. Spectra plots for tool

characteristics at first contact (i.e. when tool was new and therefore sharp) to

those describing the severely worn tool characteristics (or the occasional

chipping/failure modes) were produced. observation of the waterfall spectral

plots showed the cutting direction (z-axis) components of the vibration signals

to be most sensitive and the x-axis generally the least sensitive wear accrued.

Contour plots clarified observations from the spectra plots i.e. pinpointed the

exact principal frequency peaks. The two types of tool inserts used showed

slight difference in their active tool lives as a result of the hot hardness effect of

the coatings, but the investigations indicated that the amount of wear and its
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form was reliant more on the prevailing cutting conditions.

Yan et al [24] investigated the use of vibration signature characteristics in on-line

drill wear monitoring and breakage. Vibration signature features sensitive to

tool wear were identified in time (ratio of absolute mean value to kurtosis) and

frequency (power spectra and cepstra ratio) domains. Experimental results

showed that the kurtosis values increased drastically with drill breakage while

frequency analysis revealed sharp peaks indicating drill breakage. By

combining both the techniques, it was possible to devise an effective drill

monitoring system.

Yao et al [43] investigated detection and estimation of groove wear at the minor

cutting edge of the tool by monitoring vibration signatures. A high precision

lathe on to which was attached a miniature 3-D accelerometer, a single tool

geometry and material combination with five cutting conditions were utilised.

Each cut was interrupted to take measurements of the wear mark values. A

multivariate time series analysis was carried out on the recorded vibration

signals using a combination of autoregressive moving averages and some

explicit functions to be obtain a dispersion of the signals auto-covariance,

decomposed into the various Eigen values and normalised to within a range of

-1 and 1. The dispersion analysis showed that the thrust cutting force and

vibration were sensitive to the length of groove wear with two peaks one at a

very low frequency ≤ 200 Hz and the other at a high frequency ≥ 10 kHz.

Dan and Mathew [41] employed discrete modelling method called data

dependent system to correlate vibration signals to cutting tool wear. The

implementation of this method involved the isolation of vibration signal

deemed to be most sensitive to tool wear. Obtained results showed some

variation in the amount of vibration energy within a specific frequency band
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that was consistently observed regardless of cutting parameter. The application

of spectral analysis to the acceleration signals revealed a linear relationship

between the cutting speed and tool wear showing that vibration signals were

sensitive to tool wear.

Rotberg et al[88] were investigated in mechanical signature analysis (vibration)

for tool state prediction during interrupted cutting. They emphasis on the

milling tool entry and exit conditions. Face milling experiments were conducted

and the ensuing flank and crater wear measured. Detailed signal processing of

the recorded signals was carried out. Wear curves, average envelop at three

points of tool life (sharp, part worn, worn) and spectral descriptions of the three

wear phases were established. Inspection of the plots indicated that the

vibration signal was a suitable indicator of tool wear as it demonstrated

considerable change during tool life.

Jiang et al [45] using purposely-built test-rig was able to investigate the effects of

vibration in the cutting and feed directions on the cutting tool. Using fixed

cutting conditions, tests were conducted utilising plane-faced P10 tool inserts

with each cut lasting 10 minutes in a single pass. During the time of active tool

engagement, the wear on the tool gradually increased until it catastrophically

failed. The recorded signals were post-processed and power spectra density

(PSD) of the vibration signals was produced. Three distinctive regions identified

on the PSD could be divided into the frequency ranges: up to 100 Hz, 117-510

Hz and 510-1000 Hz, from which they performed an in-process method of tool

wear monitoring based on frequency band energy analysis. They concluded that

their experimental investigations provided sufficient evidence that vibration

signals were sensitive to tool wear states.

The inter-relationship between vibration signals and the cutting forces
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determines the dynamic nature of the cutting process, making the utilisation of

these process parameters attractive in the development of TCMSs [30]. The static

behaviour is governed by the cutting forces and and momentum (or torsion of

the tool holder). The dynamic behaviour on the other hand embodies vibration

and certain aspects of the dynamic cutting force. The combination of elements of

the cutting force and the vibration signals fused in developing a multiple

sensor-based TCMS would prove indispensable in the shop floor.

2.1.4 The tool tip/ cutting edges temperature

Metal cutting generates a significant amount of heat. The resultant high

temperatures around the cutting tool edges has a direct controlling influence on

the rate and mode of cutting tool wear, the friction between chip and cutting

tool, and also that between the cutting tool and the newly formed surface.

Frictional behaviour on the tool faces is thought to affect the geometry of the

cutting process by some mechanism not completely understood. Two metallic

surfaces in sliding contact would normally experience dry friction commonly

referred to as Coulomb friction. In metal cutting, the coefficient of friction is

independent of sliding speed and area of contact. Force is therefore required for

the continual shearing of the tips of the asperities or hills. This required force (or

load) is proportional to the frictional force in dry sliding. The coefficient of

friction between tool and chip varies considerably due to changes in cutting

speed and rake angle resulting in high pressures. In the meantime, the real area

of contact would approach unity thereby giving rise to high frictional forces that

eventually lead to high temperatures and render sliding at the interfaces almost

impossible. Removal of the generated heat is through the chip, workpiece

and/or tool. As the temperature distribution is not uniform, knowing the exact

amount of heat transferred via the tool is not straightforward. It is however

thought that the amount of heat removed or conducted via the chip is as high as
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90% of the overall heat generated, implying that less than 10% of the heat is

either absorbed or dispersed through the tool and workpiece material.

Lin [46] in his attempt to measure the cutting tool temperature on-line during a

milling process devised an inverse approach for real-time tool/workpiece

interface temperature. Infrared pyrometry was employed to measure the actual

temperature on the machined surface and a least square inverse method applied

through an ellipsoidal mapping model of the heat conduction equation. Using a

1-D co-ordinate transformation of a moving heat source system, the measured

temperature and heat dissipation to the workpiece was calculated inversely by

finite element analysis (FEA) to predict the tool-workpiece interface temperature

considered as the heat source. The designed model was tested through

application of a known heat flux input and the inverse output verified. Plots of

the actual temperature of heat source and that estimated by the proposed

method showed minute deviations. He proceeded to test the model further

using flame heating to primarily verify the uncertainties in temperature

measurement of a moving heat body.

Raman et al [47] proposed and developed a mathematical model for cutting tool

temperature measurement based on the remote thermocouple sensing (RTS)

principle. Differential quadrature modelling of the forward thermal behaviour

of the insulated cutting tool was pursued. The credibility of the method lied in

the fact that the tool/chip interface temperature distribution had a unique

characteristic relationship between the tool-chip temperature and the remote

thermocouple temperature. Cutting process temperature change was then

determined by observing the behaviour of the rest of the tool temperature (sink

response) to variations in the source of temperature (tool tip).

Stephenson and Ali [48] performed studies on tool temperature effects on
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interrupted metal cutting and reported theoretical and experimental results. The

experimental analysis involved using both infrared and tool-chip contact

thermocouple temperature measurements. The measured temperatures for a

series of machining conditions were found to be dependent upon two main

factors:

• length of cutting cycles, and

• length of cooling interval between cycles.

They pointed out that it was difficult to instrument a thermocouple for

tool-chip or tool-workpiece interface temperature sensing when the workpiece

was not hollow. The best option was the use of a non-contact measurement

technique such as infrared thermal imaging where taking measurements

required a detailed understanding of black body radiation. This technique was

only capable of temperature measurements that might be considered at best

averages rather than the true temperatures, and therefore tended to be

dominated by chip images.

Chow and Wright [49] devised an on-line method for tool-chip interface

temperature measurement in a turning process using a standard thermocouple

inserted at the bottom of the tool insert. Experiments were conducted from

which practical cutting data were collected for comparison with predicted

interface temperatures from a theoretical model. The test cuts involved dry

machining performed on plain steel tube (AISI 1020) with coated and un-coated

controlled contact tool inserts. Analysis of the experimental results obtained and

verified by the theoretical model showed that an increase in the tool wear

resulted in an increase in the cutting temperature. They concluded that the

temperature increases were primarily due to tool wear, which could be used to

effect TCM during metal cutting.
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Usui et al [50] presented what could be regarded as the most interesting

experimental approach of cutting tool edge temperature measurement. A

special purpose thermocouple was constructed from first principles using two

carbide tip parts and a quartz glass for insulation. By changing the exit position

of the circuitry wire involved, they claim that it was possible to measure the

interface temperature anywhere on the flank face of the tool (i.e. the cutting

edges). To validate this design, a series of test cuts were conducted using

nominally sharp and artificially worn tool inserts. From the ensuing analyses

and discussions, the dependency of temperature change rates on flank wear

length for both interrupted and continuous cuttings were established. From the

viewpoint of tool life estimation, observation of wear characteristics were in

agreement with the wear rate equation 2.2:

dW

σtdL
C

λ
θt (2.2)

where, C and λ are tooling and workpiece material constants; W and L are wear

volume per unit length of the tool insert face and wear distance, respectively; θt

and σt are the absolute temperature and normal stress distribution respectively.

However, beyond designing the thermocouple, their aim was not to perform

TCM but to establish the mechanisms principally responsible for flank wear rate.

Shaw [51] cited the complexity involved in any attempt to predict the mean tool

face temperature as it defies exact solutions. He proposed and evaluated an

approximate solution based on the principle of moving heat source.

2.1.5 Sensors and measurements

Generally speaking, other varieties of sensors have been employed in various

attempts at tool wear prediction, monitoring or process parameter

measurements in a metal cutting process. These methods fall principally into the



Literature survey 26

following categories:

• optical methods,

• stress/strain measurement,

• methods based on measuring the workpiece dimension,

• spindle motor current/torque/power,

• surface finish quality measurement, and

• ultrasonic methods

Stress/strain measurements

Noori-Khajavi and Komanduri [52] used amongst other sensors, strain sensors

in their study of the correlation of process parameters to drill wear. The recorded

signals were analysed in both time and frequency domains but meaningful

correlation of the drill wear could only be achieved in the frequency domain.

The area under the x-axis PSD for the strain sensor was found to correlate well

to drill wear and they proceeded to base their study on this assumption.

Zhou et al. [53] proposed to monitor the stresses acting in a cutting edge during

a machining process in order to predict tool spontaneous failure. However,

because of the impracticalities of in-process measurement of the cutting tool

stress, an on-line stress estimation based on in-process cutting forces, load

functions and the cutting conditions were used instead. They designed and

implemented a real-time TCMS based on VME computer system and real time

kernel. This incorporated a fast data acquisition unit that analysed the stresses

from force measurements. By monitoring the risk factor defined as a ratio of the

instantaneous stresses, they reported that it was possible to predict spontaneous

failures.
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Lee et al [15] proposed another method based on stress analysis of

three-dimensional loading. They combined FEA and detailed stress analysis of

the cutting edges and tips of sharp and worn tools from which they concluded

that it was possible to predict the mode and location of tool failure.

Out of all these methods, most of the researchers used conventional cutting tool

dynamometer with any one the other sensors to apply sensor fusion methods to

develop ANN models. In general. dynamometers can measure the static and

dynamic forces accurately and they can be used as a part of cutting tool

condition monitoring systems. But, their frequency range is usually limited by

the natural frequency f0 of piezoelectric components of about 3 kHz. In order to

avoid amplitude distortion, the usable frequency of a piezoelectric transducer is

restricted to about 0.6 times of f0 . In view of this, an attempt has been made to

measure both static and dynamic components of cutting force using resistance

type strain gauges (TML-120Ω -3 mm gauge length). Such gauges can follow the

static and dynamic response of a system up to 350 kHz. These strain gauges are

economical and get easily pasted on the surface of the tool. Also, they do not

affect the stiffness of the tool holder. In this thesis, sensor fusion and above

mentioned sensors (Strain gauge and accelerometers)were used to capture the

signals. Using these signals, ANN models and empirical models (using

ANOVA)have been developed. Some of the researchers were developed TCM

systems using sensor-less approach such as motor current monitoring systems

and so on. But most of the researchers developed sensor based TCM systems to

increase the reliability and consistency of the system. As mentioned above,

accelerometers ans strain gauge sensors were used to develop TCM systems.
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2.2 Artificial Neural Network

Artificial Neural Networks technology is of a relatively old origin and enormous

studies are available which relate to vibrations and dynamics of machinery.

Most of the work has been carried out in the last few decades. Mayes [61]

applied ANN for on-line vibration monitoring of large turbo-generators. The

investigations focused on data processing and the use of the neural networks

were discussed. Elkordy et al. [62] investigated the applicability of ANN for

vibration signature analysis of a five-store steel structure. The primary

investigations showed that ANNs have considerable potential to assess

structural damage.

Kram et al. [63] applied the neural net software for the validation and recovery

of the distorted vibration of electro machine systems. Vibration signals, which

represent the lateral displacement of a shaft, were obtained from proximity

probes and the Discrete Fourier coefficients were calculated. These were used as

inputs to the network to classify fault and no-fault signal. Fuzzy-input neural

net adaptive expert systems were presented for rotor diagnosis and prognosis.

A traditional binary classification system was adopted to diagnose the fault in

rotating machinery. The two possible states, fault and non-fault were described

by 1 or 0. Available knowledge for failure diagnosis in turbo machinery was

utilised to initially teach the system. Ahn and Cho [64] proposed a new

vibration control scheme using the ANN along with electromagnetic and

pneumatic principles as a hybrid type active vibration isolation system. The

characteristics were investigated via computer simulation as well as

experimentation. The proposed control scheme could suppress the

transmissibility of the vibration isolation system to below 0.63 over the entire

frequency range, including the resonance frequency, without complex

calculation or prior manipulation.
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Haung and Lian [65] proposed a different hybrid scheme with a combination of

fuzzy logic and neural network algorithms for active vibration control. A fuzzy

logic controller was designed for controlling the main influence part of the

MIMO (multi-input/multi-output) system.

Recently, Han et al. [69] presented the adaptation of neural network for

fast-valve controlling of a power generation plant. The back propagation neural

network was used to train the feed-forward neural network controller.The

computer simulated back propagation network results were compared with the

conventional fast valving methods applied to the same system. The

investigations proved that the ANN controller, has satisfactory generalization

capability, reliability and accuracy for the critical control operation.

McCormick and Nandi [67] contemplated the application of ANN for real-time

classification of rotating shaft conditions. The vibration signals were collected

from the machinery in time-domain. Simple signal processing techniques were

applied to prepare the training vector set. The use of the ANN was described to

classify the load and no-load of the rotating machinery. The network results

were compared with the frequency domain analysis.

2.2.1 Applications of ANN

The ANN can be applied in various fields of engineering. In problems like

pattern classification, associative memories, optimization, vector quantization,

filtering, and control system applications and its principles are directly applied.

Many real world problems are formulated as one of these problems, identifying

the relation between the parameters from the physical data with the input

output data and other parameters describing a neural network. Pattern
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classification problems have been successfully solved by the researchers in [104]

and [105] using neural networks. The various researchers [106, 107] have used

the neural networks for the identification of nonlinear control system dynamics.

There are several situations in control applications where the neural networks

can be applied. The applications include process control, robotics, industrial

manufacturing, aerospace and others [95]. The neural networks have been

extensively used in speech recognition, speech synthesis and speaker

identification [108, 109]. The main problem in these speech applications is the

processing of the speech signal similar to the human auditory processing

mechanism, so that the features relevant to a particular task can be extracted.

Neural networks have been successfully applied to texture classification and

segmentation [110, 111]. In the sigma-pi-sigma neural networks have been used

to determine the satellite orbital parameters and other engineering applications.

The most important issue for solving practical problems using neural networks

is still in coming up with a suitable architecture to solve a problem. We propose

neuron models for solving the real-time applications on condition monitoring of

cutting tools for turning operation using ANN principles.

2.3 Gaps in the literature

Though a lot of work has been done in TCM, still there is a need is being felt for

a reliable and universal monitoring system. Such a system would involve two

inherent components: hardware and software. Presently, the hardware

component is more developed and many sensors and transducers have been

applied in industrial conditions. However, the software component requires

improvement, as there are more difficult and complex tasks yet to be solved.

Generally, one would like to have a recipe describing how to design a tool wear

monitoring system using neural networks.
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In the past two decades, various researchers have attempted to analyze the

cutting tool failure (flank wear, nose wear and crater wear) by using Artificial

Neural Networks (ANN) and mainly focused on either flank wear prediction or

crater wear prediction or both. In the literature, a few neural network models

are available in the area of cutting tool condition monitoring (TCM) system ,

which are able to predict all types of tool failure.

From the literature review the following areas are identified as which need

further research work to be carried out.

• The methodology to create cutting tool wear of the desired dimensions and

shape.

• Most of the TCM systems have applied supervised learning process to

identify the condition of cutting tool. One of the main problems in ANN is

design of network architecture. In the literature [7], optimum ANN

structure (number of neurons, number of layers) is obtained by using ’trial

and error’ method. Future research should be engaged in optimisation of

ANN structure to minimise the computation time.

• Most of the researchers have developed ANN models to predict the

condition of the cutting tool having either flank wear, crater wear or nose

wear. Hardly any ANN models is available which can take into account all

of them at one time and predict the actual condition of the cutting tool.

• Many researchers have used the sensor fused (sensors’ output are mixed)

system with an additional sensor to increase the confidence limit of

machining process. These data are used to develop ANN models to

monitor the condition of cutting tool.

In this direction, an attempt has been made in this research work to create

artificial wear (well defined shape and size) using EDM process. A systematic
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procedure and instrumentation system has been developed to predict the

condition of cutting tool. In this thesis an attempt made to create neural network

model in such a way that it should predict both flank wear and chipping failure

using back propagation algorithms.

2.4 Scope and objectives of the present work

The motivation behind the development of cutting tool condition monitoring

system is to develop an on-line condition monitoring system to predict the

condition or health of the cutting tool. It requires an instrumentation system

comprising of sensors, condition monitoring units (charge amplifiers, filters)

and analysis and predictive algorithms. Main aim of this work is to develop

instrumentation system which shows the condition of the cutting tool in on-line.

To achieve this objective the following methodology have been adopted. The

methodology involves acquisition of experimental data, data processing, feature

extraction, development of analysis and predictive algorithms. Strain gauge and

accelerometers sensors were fitted on the cutting tool and signals were acquired

by respective strain gauge module (LabVIEW) and an FFT analyzer. Signals

have been processed and information extracted to develop ANN and statistical

models. These models have been validated with experimental results. To

generate experimental results, the flank wear and chipped off cutting edge have

been produced using EDM process. The empirical models have been developed

and the ANOVA has been carried out to understand the developed system in

depth.



Chapter 3

Cutting tool wear and creation of

artificial tool wear

3.1 Tool failure

In general the cutting tool failure may be classified in the following three

categories [54]:

• Fracture failure - This mode of failure occurs when the cutting force

becomes excessive, causing the cutting tool to fail by brittle fracture

• Temperature failure - This failure occurs when the cutting temperature is

too high for the tool material, causing the material at the tool point to soften,

which leads to plastic deformation and loss of the sharp edge.

• Gradual wear - Gradual wear of the cutting edge causes loss of tool shape,

reduction in cutting efficiency, an accelerated wear as the tool has worn

out heavily, and finally tool failure takes place in a manner similar to the

temperature failure.

Fracture and temperature failures result in premature loss of the cutting tool.

These two modes of failure are undesirable and depend upon machining

33
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conditions namely cutting speed, feed rate and depth of cut. Out of the three

possible modes of failure, gradual wear leads to the longest possible use of the

tool, with the associated economic advantage of the longer use.

Gradual wear occurs at two locations on a cutting tool: the top rake face (Crater

wear) and flank face (Flank wear) as shown in Figure 3.1. Crater wear consists of

a concave section (Figure 3.1) on the rake face of the tool, formed by the action of

the chip sliding over the surface. High stresses and temperatures characterize

the tool-chip contact interface, contributing to the wearing action. Flank wear

(Figure 3.1) occurs on the flank, or relief face, of the tool. It results from rubbing

between newly generated work surface and the flank face adjacent to the cutting

edge. As cutting proceeds, various mechanisms result in increasing levels of

wear on a cutting tools. The general relationship of tool wear versus cutting

time is shown in Figure 3.2. The first is the break-in period, in which the sharp

cutting edge (or new tool) wears rapidly at the beginning of its use. The tool

crosses the first region occurs within the first few minutes of cutting. The

break-in period is followed by gradual wear that occurs at a fairly uniform rate.

This is called the steady state wear region. Finally, wear reaches a level at which

the wear rate accelerates. This marks the beginning of the failure region, in

which cutting temperature is higher, and the general efficiency of the machining

process is reduced. If allowed to continue, the tool finally fails by temperature

failure and many times attains unusable condition.

3.2 Tool life

A common way of quantifying the end of a tool life is to put a limit on the

maximum acceptable flank wear, as shown in Table 3.1. Mathematically the tool

life can be expressed by the following Taylor’s tool life equation (3.1):
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Figure 3.1: Cutting tool wear [54]

Figure 3.2: Tool wear as a function of cutting time [54]
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V T n = C (3.1)

where V = cutting speed and T = tool life. The constants n and C depend upon

the workpiece material and tool material [55]. This may be calculated from the

experimental results.

3.3 Generalized Taylor’s Tool Life Equation

Generalized Taylor’s tool life equation 3.2 is given as follows

V T nfmdpHq = C (3.2)

Where f = feed rate; d = depth of cut; H = work material hardness. The

exponents, n, m, p, q and C are normally determined experimentally. The

determination of these constants requires more number of experiments and

valid for a particular set of machining conditions, workpiece materials and so

on. However, there are several problems with these models (equations 3.1and

3.2). First, these do not take into account any imperfections in the process, such

as tool vibration or chip adhesion and so on. Secondly, there are practical

limitations to this model, as certain tools (such as CBN or carbide) require

specific geometries to improve tool life. These models may not be useful to

cutting tool condition monitoring systems because of stochastic nature of the

machining process. The artificial neural network is a good tool to handle such

type of non-linear and stochastic problems. But this neural network methods are

costly in terms of training and testing the experimental data.

3.4 Selection of tool and workpiece materials

Selection of cutting tool material for a specific application is crucial to achieve

efficient machining. It depends upon workpiece material, machining conditions
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Table 3.1: Flank wear levels [7]

Tool Type Maximum allowable Flank wear

HSS tools, roughing 1.5 mm

HSS tools, finishing 0.75 mm

Carbide tools 0.7 mm

Ceramic tools 0.6 mm

such as cutting speed, feed rate, depth of cut and so on. On the basis of

experience and analysis, manufacturers and designers of cutting tools have

recommended the selection criteria for cutting tool material with different

workpiece materials as shown in Table 3.2. Selection of cutting tool materials

mainly depends on workpiece material and its machining conditions.

In the past two decades, various researchers have attempted to analyze the

cutting tool failure (flank wear, nose wear and crater wear) by applying the

concepts of Artificial Neural Networks (ANN), Statistical methods, Fuzzy logic

and so on. Almost all previous research has been focused on either flank wear

prediction or crater wear prediction and so on. In the literature [7], Some

methods and models are available in the area of cutting tool condition

monitoring (TCM) system which is capable to predict all types of tool failure. In

this work artificial flank wear and chipping failure are created externally using

Electrical Discharge Machining (EDM) process. Using this worn out tool various

experiments were conducted and the analysis has been made to create neural

networks model in such a way that it is capable to predict both flank wear and

chipping failure using back propagation algorithms. The next section deals with

EDM process which is used to create flank wear and chipping failure.
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3.5 Creation of artificial flank wear

In the present work, the DNMG inserts are used which already have built-in

chip breaking groove. So, during actual cutting, it is not possible to introduce

crater wear. As mentioned earlier only two types of tool damage namely flank

wear (nose wear also included in this case) and chipping were studied. In actual

machining experiments, the wear generated geometry is not uniform hence its

dimensions have to be averaged. However in the present case, uniform flank

wear was artificially created having the desired dimension. It was done using

EDM machine as discussed in the following paragraph. While creating artificial

flank wear, the following important cutting tool geometrical parameters were

taken into consideration namely, rake angle, clearance angle, length of the flank

wear and radial wear length [55].

The relationship between flank wear and radial wear is given (Figure 3.3) as

follows:

rf =
hf tan αo

1− tan αotan γo

(3.3)

where, rf is the radial wear length, hf is the flank wear length, αo is clearance

angle and γo is rake angle.

According to equation (3.3), the value of flank wear length ( hf ) and radial

wear length (rf ) are calculated to create flank wear in the range of 0.2 mm to 0.5

mm. EDM experimental set up as shown in Figure 3.4 is used to create artificial

flank wear. For creating flank wear, the replica of the flank wear is first

produced in the copper rod by turning operation and then this copper rod is

used in the EDM process as a tool (cathode) to replicate the flank wear on the

cutting tool(anode). The flank wear produced during actual machining is shown

in Figure 3.5. The exact shape of the flank wear which is created through EDM

process is as shown in Figure 3.6.
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Figure 3.3: Schematic diagram of flank wear [55]

a b

Figure 3.4: (a) EDM experimental setup (b) Schematic diagram of copper rod and

DNMG cutting tool
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Figure 3.5: Flank wear produced during turning process

Figure 3.6: Artificial flank wear produced by EDM process
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3.6 Creation of artificial chipping failure

To create chipping effect, the same procedure is used as in the above case except

that in place of formation of flank wear, the cutting edge up to a certain depth

and predetermined width is removed by EDM. A rectangular copper rod has

been used in the EDM process as a tool (cathode) to create a chipped off tool (a

small part of the cutting edge removed) on the DNMG cutting tool. During

EDM, the DNMG cutting tool (used as a work piece in EDM operation) is made

as an anode. Feed rate determines length of the cutting edge removed (say, 3

mm, 4 mm and so on) and depth of cut determines the depth of penetration of

copper rod in to the cutting tool (like 0.2 mm, 0.3 mm and so on). However,

there are some basic differences between the artificially created chipped off tool

using EDM process and actually chipped off tool obtained during turning

operation. Real life chipped off tool has undefined shape and size (Figure 3.7)

and it is usually caused because of brittle fracture due to impact loading. The

artificially created chipping is almost uniform and caused due to thermal

erosion using EDM process. Hence, the artificially created chipped off tool may

be having thermal effects like micro cracks and residual stresses as well [13].

However, this concept of artificially creating chipped off tool can be applied for

producing non-uniform shape and size of a chipped off cutting edge also.

Hence, while comparing the captured signals, this difference should be kept in

mind. In this case, a rectangular copper rod (cathode) used for removing cutting

edge in the cutting tool (anode) to a predefined value of rf and a well defined

length of cut (which is equal to experimental design value of depth of cut of

machining parameters). The exact shape of chipping defect is as shown Figure

3.8.

The main objective of the present work is to standardize various tool failure

measurements as well as to study the machining behavior for well defined

failure levels. It is a well known fact that if the two tools work under the same
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machining condition for the same period of time, the two flank wears will not be

same hence it is a random process in this sense. By simulating wears on the tools

using EDM process, the repeatable shape and size of the tool wear can be

achieved to conduct many experiments of the similar worn out tools. In this

analysis exactly 0.2, 0.3, 0.4 and 0.5 mm flank wear levels have been achieved for

signals are captured. In the previous literature, Researchers have measured the

flank wear by averaging the peaks of irregular shape. Further, all the three

wears can be simultaneously created on the tool to study their effects.

In actual metal cutting experiments, the tool wear geometry generated is not

uniform hence its dimensions have to be averaged out. Therefore, it was

decided to artificially create the uniform wear (flank and chipping failure) of the

desired averaged dimension on the tool using EDM machine as discussed in the

following paragraph.

Real life flank wear on a cutting tool has undefined shape and size, while the

artificially created flank wear is almost uniform and caused due to thermal

erosion by sparking phenomenon in EDM process. Hence, the artificially created

worn out tool may also have thermal defects like micro-cracks and thermal

residual stresses. In actual machining, cutting tool tip is always subjected to high

temperature. If cutting fluids is not used over this tip, there are good chances of

development of micro cracks in the cutting edge. Hence, this tool wear can be

considered as equivalent to artificially created tool wear. However, this concept

of artificially creating flank wear on the tool can be applied for non-uniform

shape and size also provided they are mathematically representable. Hence,

while interpreting the captured signals, this difference should be kept in mind.

3.7 Tool wear measurement

The measurement of wear can be carried out using one of the three categories of

sensors, namely proximity sensors, radioactive sensors and vision sensors. Most
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Figure 3.7: Cutting tool - Chipping Failure due to impact load

Figure 3.8: Chipping created by EDM process
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of the researchers use optical microscope to determine worn out area, namely,

flank wear length, crater wear length and so on.

In this study, optical USB port microscope (Scalar) is used to capture the image

of worn out area with magnification factor of 50X . Before measurements, insert

is mounted on a stand, made of Perspex having included angle of 550 as shown

in Figure 3.9. It covers entire portion of nose and flank face. Through out the

measurements, position of the stand and focal distance are kept constant so that

uniform measurements are achieved without any variation. In this microscope,

built-in software (namely USB digital scale) is used to measure the flank wear as

well as chipping depth.

Figure 3.9: Flank wear measurements setup
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Experimental setup and Design of

Experiments

4.1 Experimental setup

Now-a-days, high speed machining is popular to increase the production rate as

well as to reduce the production cost. Selection of an appropriate machine is

also an important task. All the experiments are carried out on a CNC

GILDMEISTER CTX 400 Serie 2 turning center. One of the main objectives of the

this research work is to monitor the condition / health of the cutting tool. While

concentrating on cutting tool, it is assumed that the condition of the machine

and its components is good in all other aspects such as foundation of the

machine, rigidity of the machine components (such as bed, spindle, tail stock,

etc.) and so on. All the components of the machine tool should function

properly and should not vibrate by applying external dynamic load. Hence, the

above said CNC turning center is chosen. The experimental set up is shown in

Figure 4.1. The experiments are conducted on EN-8 steel (workpiece) using

DNMG 150608 insert with Seco tool holder PDJNR 2020 K15 without cutting

fluid (dry machining). Cutting fluid can not be applied during machining

46
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process because the cutting tool is instrumented with resistance type strain

gauge and accelerometer. It is possible to insulate the sensors from cutting

fluids. In our experiments, strain gauge is pasted on the surface of the cutting

tool by using adhesive. If pressurised cutting fluid is applied on the tool then

there may be a chance of breakage of the electrical connections due to the

simultaneous effect of high temperature and high pressure. For studying cutting

fluid influence the strain gauge has to be hermetically seale. This could not be

done in the present study.

4.1.1 Instrumentation system

There are two basic configurations of tool and process condition monitoring

systems: compact and modular. Montronix, Brank-amp, Bruel and Kajer,

Nordmann and Kistler produce the former. In such a system, the core element is

the monitor. The monitors are universal, i.e. they can be fed with signals from

different types of sensors. The signals generated by the sensors and conditioned

by amplifiers are sent to the monitor, which is directly connected to the machine

control (PLC/CNC). Only Kistler, which is basically a producer of excellent

force, stress, vibration, AE sensors offer one universal monitor and also output

of the sensor can be fed to the computer through DAQ card which is supplied by

National Instruments (LabVIEW).

In this research work the cutting tool is instrumented with resistance type strain

gauges (TML − 120Ω) and two accelerometers (NP-3331 ONO-SOKKI). The PXI

chassis is equipped with DAQ card, two connector blocks (SCXI 1314 and SCXI

1520), a Wheatstone bridge configuration and an amplifier (Figure 4.2). The

magnitude of strain and amplitude of vibration depend upon various

machining parameters, and it is observed that they increase with depth of cut

and feed rate, and decrease with cutting speed. While machining, the cutting
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Figure 4.1: Experimental setup

tool is subjected to a state of stress. The resultant strain induces a voltage signal

and it is measured with a half bridge configuration using LabVIEW. The

experimental details including type of workpiece material and its sensors are

shown in Table 4.1.
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Table 4.1: Experimental parameters

CNC turning center GILDMEISTER CTX 400 Serie2

Work piece EN 8 Steel

Holder type PDJNR 2020 K15

Insert type DNMG 150608 M3

Sensors Accelerometer: NP-3331- ONO-SOKKI

and Strain Gauges (TML− 120Ω)

Data acquisition PXI 1011System (National Instruments)

and FFT analyzer (ONO-SOKKI)

Two accelerometers are placed in the turning center as shown in Figure 4.3.

One is placed in the cutting direction on the tool holder and the other one is

placed in the feed direction on the backside of the turret for measuring vibration

amplitude in terms of accelerations (g-levels).

4.2 Design of Experiments

4.2.1 Flank wear experiments

3k full factorial design [57] with three levels for each value of factors ′k′ is used.

The three levels of factors are low (-1), intermediate (0), high (1). It forms 33

factorial designs for three variables and it contains 27 experiments with degrees

of freedom equal to 26. A full factorial design was selected to allow all the three

level interactions between the independent variables to be effectively

investigated. The independent variables in this study are cutting speed, feed

rate and depth of cut. The artificial flank wear and chipping is the fourth and
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Figure 4.3: Accelerometers and Strain gauge locations

fifth independent variables respectively which is kept at five different levels

ranging from 0 to 0.5 mm as shown in Table 4.2 and Table 4.3.

The three responses or dependent variables (namely, strain due to bending

action of a cutting tool and two accelerometers responses in cutting direction

and feed directions) are measured for various machining conditions. Tungsten

carbide cutting tools equipped with throw-away inserts (DNMG 150608) were

used in turning operation. Based on the previous study [58], flank wear level

is minimum at the tool corner radius of 0.8 mm. So, in this study, the insert

nose radius has been chosen as 0.8 mm with an angle of 550 diamond shape.

The work piece material is EN8 steel and is supported by a tail stock to avoid

excessive overhang. A total number of 135 experiments (Table 4.4 to Table 4.6)

were performed to include all combinations of the four independent parameters.
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Table 4.2: Levels and absolute values of Independent variables - Flank wear

experiments

Variables Units Levels

-2 -1 0 1 2

Cutting speed m/min - 200 350 500 -

Feed rate mm/min - 100 300 500 -

Depth of cut mm - 3 4 5 -

Flank wear mm 0 0.2 0.3 0.4 0.5

Table 4.3: Levels and absolute values of Independent variables - Chipping failure

experiments

Levels Cutting speed

in m/min

Feed rate in

mm/min

Depth of cut

in mm

Chipped off

depth in mm

-2 200 100 3.0 0.0

-1 275 200 3.5 0.2

0 350 300 4.0 0.3

1 425 400 4.5 0.4

2 500 500 5.0 0.5
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Table 4.4: Dynamic response of accelerometer (channel 1) in cutting direction
Experimental conditions Acceleration, g for different levels of flank wear(mm)

Ex No CS FR DOC 0.5 0.4 0.3 0.2 0.0
1 500 500 5 0.2330 0.1580 0.0298 0.0091 0.0107
2 500 500 4 0.0528 0.0079 0.0131 0.0043 0.0026
3 500 500 3 0.0456 0.0196 0.0026 0.0009 0.0020
4 500 300 5 0.0759 0.0298 0.0132 0.0113 0.0070
5 500 300 4 0.0389 0.0079 0.0050 0.0058 0.0012
6 500 300 3 0.0348 0.0035 0.0047 0.0023 0.0014
7 500 100 5 0.0492 0.0033 0.0019 0.0028 0.0061
8 500 100 4 0.0310 0.0029 0.0019 0.0020 0.0031
9 500 100 3 0.0238 0.0013 0.0003 0.0006 0.0005
10 350 500 5 0.2750 0.2330 0.1050 0.0199 0.0111
11 350 500 4 0.2000 0.0200 0.0219 0.0053 0.0036
12 350 500 3 0.0316 0.0111 0.0038 0.0030 0.0034
13 350 300 5 0.2530 0.0456 0.0247 0.0128 0.0083
14 350 300 4 0.1540 0.0187 0.0090 0.0085 0.0061
15 350 300 3 0.0275 0.0052 0.0074 0.0043 0.0016
16 350 100 5 0.1890 0.0348 0.0105 0.0066 0.0064
17 350 100 4 0.0691 0.0115 0.0097 0.0009 0.0039
18 350 100 3 0.0107 0.0008 0.0026 0.0011 0.0009
19 200 500 5 0.2650 0.2650 0.2320 0.0345 0.0153
20 200 500 4 0.2320 0.0585 0.0241 0.0090 0.0095
21 200 500 3 0.1760 0.0065 0.0092 0.0087 0.0052
22 200 300 5 0.2410 0.0621 0.0261 0.0442 0.0132
23 200 300 4 0.1630 0.0389 0.0110 0.0098 0.0091
24 200 300 3 0.1580 0.0076 0.0058 0.0045 0.0019
25 200 100 5 0.1060 0.0613 0.0145 0.0129 0.0112
26 200 100 4 0.0613 0.0186 0.0098 0.0092 0.0053
27 200 100 3 0.0186 0.0042 0.0077 0.0051 0.0037

CS=Cutting speed, m/min FR=Feed rate, mm/min DOC=Depth of cut, mm
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Table 4.5: Dynamic response of accelerometer (channel 2) in feed direction
Experimental conditions Acceleration, g for different levels of flank wear(mm)

Ex No CS FR DOC 0.5 0.4 0.3 0.2 0.0
1 500 500 5 0.2670 0.2450 0.0103 0.0089 0.0068
2 500 500 4 0.2370 0.0883 0.0065 0.0058 0.0037
3 500 500 3 0.1570 0.0277 0.0035 0.0025 0.0017
4 500 300 5 0.0939 0.0638 0.0071 0.0061 0.0040
5 500 300 4 0.0448 0.0191 0.0049 0.0051 0.0031
6 500 300 3 0.0239 0.0087 0.0024 0.0017 0.0025
7 500 100 5 0.0457 0.0229 0.0040 0.0033 0.0033
8 500 100 4 0.0408 0.0059 0.0028 0.0028 0.0024
9 500 100 3 0.0191 0.0065 0.0015 0.0007 0.0019
10 350 500 5 0.2480 0.2370 0.0210 0.0136 0.0077
11 350 500 4 0.2450 0.0389 0.0086 0.0061 0.0054
12 350 500 3 0.1640 0.0110 0.0054 0.0033 0.0044
13 350 300 5 0.2490 0.0627 0.0100 0.0070 0.0054
14 350 300 4 0.1900 0.0122 0.0066 0.0058 0.0034
15 350 300 3 0.1430 0.0057 0.0033 0.0021 0.0027
16 350 100 5 0.0929 0.0264 0.0050 0.0053 0.0037
17 350 100 4 0.0264 0.0055 0.0036 0.0029 0.0028
18 350 100 3 0.0249 0.0045 0.0031 0.0007 0.0025
19 200 500 5 0.2710 0.1210 0.0226 0.0194 0.0083
20 200 500 4 0.2640 0.0239 0.0123 0.0094 0.0067
21 200 500 3 0.1690 0.0017 0.0085 0.0037 0.0051
22 200 300 5 0.2330 0.0408 0.0159 0.0125 0.0061
23 200 300 4 0.1470 0.0063 0.0120 0.0084 0.0041
24 200 300 3 0.1310 0.0039 0.0062 0.0045 0.0034
25 200 100 5 0.1920 0.0167 0.0127 0.0064 0.0049
26 200 100 4 0.1330 0.0249 0.0089 0.0033 0.0032
27 200 100 3 0.0601 0.0044 0.0081 0.0010 0.0028

CS=Cutting speed, m/min FR=Feed rate, mm/min DOC=Depth of cut, mm
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Table 4.6: Dynamic response of Strain gauge (channel 3)
Experimental conditions Micro strain for different levels of flank wear(mm)

Ex No CS FR DOC 0.5 0.4 0.3 0.2 0.0
1 500 500 5 7.4488 4.2373 0.0141 0.02108 0.001350
2 500 500 4 0.0274 0.1118 0.0013 0.00566 0.000378
3 500 500 3 0.0100 0.0017 0.0006 0.00229 0.000234
4 500 300 5 0.8566 0.0210 0.0025 0.00736 0.001245
5 500 300 4 0.0224 0.0031 0.0011 0.00174 0.000166
6 500 300 3 0.0017 0.0011 0.0002 0.00053 0.000020
7 500 100 5 0.0500 0.3906 0.0007 0.00004 0.000749
8 500 100 4 0.0141 0.0079 0.0003 0.00056 0.000148
9 500 100 3 0.0015 0.0010 0.0003 0.00009 0.000138
10 350 500 5 13.9720 5.7864 0.3940 0.02123 0.269500
11 350 500 4 0.5940 0.0141 0.0727 0.01852 0.001401
12 350 500 3 0.1176 0.0045 0.0061 0.01562 0.000265
13 350 300 5 1.0856 1.8221 0.1274 0.01791 0.013886
14 350 300 4 0.3371 0.0104 0.0241 0.00196 0.000343
15 350 300 3 0.0727 0.0017 0.0159 0.00108 0.000159
16 350 100 5 0.0637 0.0797 0.0014 0.00014 0.000803
17 350 100 4 0.0485 0.0100 0.0012 0.00064 0.000286
18 350 100 3 0.0270 0.0012 0.0007 0.00096 0.000002
19 200 500 5 14.1680 13.9720 12.8480 0.65594 0.367030
20 200 500 4 4.2373 0.3184 5.6611 0.01325 0.015560
21 200 500 3 0.3217 0.0727 0.0168 0.00064 0.006222
22 200 300 5 2.4882 2.4882 0.4354 0.02416 0.019056
23 200 300 4 0.4334 0.0141 0.0322 0.00437 0.012440
24 200 300 3 0.1361 0.0036 0.0199 0.00038 0.004686
25 200 100 5 0.1450 0.0985 0.0110 0.00303 0.000729
26 200 100 4 0.0943 0.0284 0.0011 0.00080 0.001429
27 200 100 3 0.0286 0.0017 0.0009 0.00049 0.000128

CS=Cutting speed, m/min FR=Feed rate, mm/min DOC=Depth of cut, mm
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4.2.2 Chipping failure experiments

Chipping failure normally occurs due to improper selection of machining

conditions or due to hard spots in the workpiece material, which lead to

chipping failure of the cutting edge. To study about input and output response

of machining, a four factors central composite rotatable design [57] with five

levels (-2, -1, 0, 1, and 2) has been chosen to minimize the number of

experiments. It contains 31 experiments (Table 4.7) with degrees of freedom

equal to 30. The independent variables in this study are cutting speed, feed rate,

depth of cut and chipped off depth. The independent variables were kept at five

different levels as shown in Table 4.3.

Two responses or dependent variables (namely, strain due to bending action of a

cutting tool and acceleration, g in cutting direction) are measured for various

machining conditions. Tungsten carbide cutting tools [58] (throw - away inserts

DNMG 150608) were used in turning operation. The work piece material is

EN-8 alloy steel and it is supported by a tail stock to avoid excessive overhang.

Dynamometers can measure the static and dynamic forces accurately, and they

can be used [59] as a part of cutting tool condition monitoring system. But, their

frequency range is usually limited by the natural frequency f0 of piezoelectric

components of about 3 kHz. In order to avoid amplitude distortion, the usable

frequency of a piezoelectric transducer is restricted to about 0.6 times of f0. In

view of this, an attempt has been made to measure both static and dynamic

components of cutting force using resistance type strain gauges (TML− 120Ω - 3

mm gauge length). Such gauges can follow the static and dynamic response of a

system up to 350 kHz. These strain gauges are economical and get easily pasted

on the surface of the tool. Also, they do not affect the stiffness of the tool holder.
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Figure 4.4: Diagram of SCXI-1314 connecting channel

Several references are available [60] on vibrations in the low frequency range,

close to the natural frequency of vibration of spindle work piece (up to 300 Hz).

Various authors have found that the frequencies relevant for TCM can be as high

as 8 kHz, and usually above 1 kHz. This means that the signal essentially,

consists of low frequency components that are indicators of static cutting force.

In this chapter 4 experimental designs and their responses are repoted . The

analysis part will be carried out in the subsequent Chapter 5 (Parametric

analysis).
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Table 4.7: Chipping failure experimental parameters and its sensor responses
No Cutting

speed, m/min

Feed rate,

mm/min

Depth of

cut, mm

Chipped off

depth, mm

Acceleration,

g

Micro

strain
1 200 300 4.0 0.4 0.155 60.520
2 275 200 3.5 0.3 0.042 15.200
3 275 400 3.5 0.3 0.067 37.290
4 275 200 4.5 0.3 0.042 40.390
5 275 400 4.5 0.3 0.066 49.272
6 275 200 3.5 0.5 0.047 14.678
7 275 400 3.5 0.5 0.082 46.000
8 275 200 4.5 0.5 0.088 40.000
9 275 400 4.5 0.5 0.106 49.000
10 350 100 4.0 0.4 0.022 14.468
11 350 500 4.0 0.4 0.065 39.807
12 350 300 3.0 0.4 0.043 11.687
13 350 300 5.0 0.4 0.059 39.468
14 350 300 4.0 0.2 0.028 7.844
15 350 300 4.0 0.6 0.069 40.472
16 350 300 4.0 0.4 0.034 28.793
17 350 300 4.0 0.4 0.038 26.176
18 350 300 4.0 0.4 0.037 25.059
19 350 300 4.0 0.4 0.036 24.401
20 350 300 4.0 0.4 0.036 23.104
21 350 300 4.0 0.4 0.033 22.224
22 350 300 4.0 0.4 0.035 22.690
23 425 200 3.5 0.3 0.012 11.687
24 425 400 3.5 0.3 0.027 25.700
25 425 200 4.5 0.3 0.014 0.250
26 425 400 4.5 0.3 0.046 9.468
27 425 200 3.5 0.5 0.023 24.342
28 425 400 3.5 0.5 0.040 30.338
29 425 200 4.5 0.5 0.040 31.492
30 425 400 4.5 0.5 0.050 40.724
31 500 300 4.0 0.4 0.003 0.005



Chapter 5

Parametric Analysis

5.1 Response surface methodology

Response surface methodology (RSM) is a structured, organized method that is

used to determine the relationship between the different input factors (Xs)

affecting a process and the output of that process (Y). It involves designing a set

of experiments, in which all relevant factors are varied systematically [29].

When the results of these experiments are analyzed, they help to identify

optimal conditions, the factors that most influence the results, and those that do

not, as well as details such as the existence of interactions and synergies between

factors.

Building a design means, carefully choosing a small number of experiments that

are to be performed under controlled conditions. There are four interrelated

following steps in building a design:

• Define an objective to the investigation, e.g. better understand or sort out

important variables or find optimum.

• Define the variables that will be controlled during the experiment (design

variables), and their levels or ranges of variation.

59
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• Define the variables that will be measured to describe the outcome of the

experimental runs (response variables), and examine their precision.

• Among the available standard designs, choose the one that is compatible

with the objective, number of design variables and precision of

measurements, and has a reasonable cost.

In this thesis, cutting phenomenon has been analyzed by using power spectrum

of vibration and strain gauge signals. Typical power spectral plots are shown

in Figures 5.1 and 5.2. It is seen that 3.91 kHz is the predominant frequency in

the response signals. At this particular frequency the cutting tool is subject to

higher amplitude of vibration because of its own natural frequency. In the higher

frequency range, natural frequencies of the tool holder are observed. The forces in

this range (higher frequency) are called as dynamic cutting forces. In the present

work, the fundamental natural frequency of the cutting tool was found to be 3.91

kHz, by conducting a rap test as shown in Figure 5.3. Experiments have been

carried out for various machining conditions. Strain gauge and vibration signals

are measured from 0 to 10 kHz with a sampling rate of 25.6 kHz. Sample size is

4096 data points. Programming is done in LabVIEW to acquire the strain gauge

signals and store them continuously frame by frame to monitor the condition of

the cutting tool at every stage in on-line.

Input parameters (amplitude of acceleration, g and strain) to the ANOVA are

obtained from the three sensors output using a

5.2 Flank wear model and validation

5.2.1 Model Development

Input parameters (amplitude of acceleration, g and strain) to the ANOVA are

obtained from the three sensors output using MatLab code as shown in the
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Figure 5.1: Response of the accelerometer in cutting direction. Cutting speed =

200 m/min, feed = 500 mm/min and depth of cut = 3mm for flank wear of 0.3

mm.

Figure 5.2: Response of the strain gauge.Cutting speed = 200 m/min, feed = 500

mm/min and depth of cut = 3 mm for flank wear of 0.3 mm.
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Figure 5.3: Fundamental Frequency - Rap test

Tables 4.4, 4.5 and 4.6. Using Data fit statistical software various models have

been developed (say, polynomial (R2 = 0.5171), power (R2 = 0.6712)and

exponential models (R2 = 0.8973)). Out of all these models, the exponential

model yields highest R2 value and these models are shown in equations 5.1, 5.2

and 5.3. From the ANOVA (Table 5.1) all the values of P ≤ 0.01 which indicates

that all the machining parameters are effective and also significant indicates at

99% confidence level. The detailed ANOVA has been made with respect to

machining input parameters and their significance of cutting parameters are

shown in Table 5.1 for channel 1 (Response of accelerometer in cutting

direction). From the results of ANOVA (Tables 5.2 and 5.3), it is observed that F

Ratios were large enough and indicate that the developed models are

appropriate [57].

Out of five levels of flank wear, three levels (0.2, 0.3 and 0.4 mm) were

selected for the analysis of variance (ANOVA) to develop the regression models

(equations 5.1, 5.2 and 5.3) to show the relationship between output response

and machining input parameters. A model has four independent parameters (as
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shown in Table 5.4) for three dependent responses . The selected models for

channel 1, channel 2 and channel 3 are given by the equations 5.1, 5.2 and 5.3,

respectively. These models gave higher value of F-ratio as compared to the

tabulated F-ratio value which demonstrates that the selected models are

appropriate. According to ANOVA response (F ratio, P and R2 values) the best

regression model has been chosen.

β1 = exp(a1x1 + b1x2 + c1x3 + d1x4 + e1) (5.1)

β2 = exp(a2x1 + b2x2 + c2x3 + d2x4 + e2) (5.2)

δ = exp(a3x1 + b3x2 + c3x3 + d3x4 + e3) (5.3)

where, x1 = cutting speed, x2 = feed rate, x3 = depth of cut, x4 = flank wear, β1

= Acceleration, g in cutting direction, β2 = Acceleration, g in feed direction, δ=

Micro strain. Following values of the various coefficients of equations (5.1-5.3)

have been obtained.

a1 = 2.565× 10−3, a2 = 1.939× 10−3, a3 = 7.054× 10−3, b1 = 6.379× 10−3,

b2 = 6.137× 10−3, b3 = 9.878× 10−3, c1 = 1.706, c2 = 1.296, c3 = 2.006,

d1 = 7.066, d2 = 22.169, d3 = 6.538, e1 = 15.233, e2 = 20.734, e3 = 13.444

5.2.2 Model Validation

To compare experimental and theoretical results, the error between the regression

model values and experimental values are calculated as (equation 5.4):

δ =
Am − Ai

Am

× 100 (5.4)

where δ = error rate between experimental data and regression model data,Ai =

the experimentally measured acceleration, g or micro strain, Am= the predicted
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Table 5.1: ANOVA for the effect of machining parameters on dynamic response

of accelerometer in cutting direction (channel 1)
Source DF SS MS F P
Regression 4 0.174 4.348E-02 166.045 0
Residual Error 76 1.990E-02 2.618E-04
total 80 0.194
Predictor Coef SE Coef T P
Constant -15.233 0.988 -15.427 0.004
Cutting speed -2.560E-03 3.219E-04 -7.970 0.008
Feed rate 6.370E-03 5.802E-04 10.996 0.002
Depth of cut 1.707 0.184 9.294 0.004
Flank wear 7.063 0.635 11.121 0.006
Source DF
Cutting speed 1
Feed rate 1 R2 = 0.897
Depth of cut 1
Flank wear 1

Table 5.2: ANOVA for the effect of machining parameters on dynamic response

of accelerometer in feed direction (channel 2)
Source DF SS MS F P
Regression 4 0.123 3.086E-02 352.031 0
Residual Error 76 6.662E-03 8.7662E-05
total 80 0.130
Predictor Coef SE Coef T P
Constant -20.734 0.984 -21.074 0.001
Cutting speed 1.939E-03 2.131E-04 9.099 0.006
Feed rate 6.137E-03 3.862E-04 15.891 0.003
Depth of cut 1.297 8.325E-02 15.577 0.001
Flank wear 22.163 2.183 10.155 0.005
Source DF
Cutting speed 1
Feed rate 1 R2 = 0.949
Depth of cut 1
Flank wear 1
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Table 5.3: ANOVA for the effect of machining parameters on dynamic response

of strain gauge bridge (channel 3)
Source DF SS MS F P
Regression 4 343.347 85.837 81.396 0
Residual Error 76 80.147 1.055
total 80 423.494
Predictor Coef SE Coef T P
Constant -13.444 2.185 -6.152 0.004
Cutting speed -7.054E-03 9.450E-04 -7.457 0.001
Feed rate 9.878E-03 1.880E-03 5.254 0.001
Depth of cut 2.006 0.388 5.168 0.007
Flank wear 6.538 0.934 6.998 0.008
Source DF
Cutting speed 1
Feed rate 1 R2 = 0.811
Depth of cut 1
Flank wear 1

Table 5.4: Levels of Independent variables

Variables Units Levels

Cutting speed m/min 200 350 500

Feed rate mm/min 100 300 500

Depth of cut mm 3 4 5

Flank wear mm 0 0.2 0.3 0.4 0.5

Chipping depth mm 0.2 0.3 0.4 0.5 0.6
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Figure 5.4: Response of accelerometer in feed direction. Variation of Vibration

levels, g Vs Cutting speed for feed rate = 300 mm/min, depth of cut = 4 mm and

flank wear = 0.3 mm

acceleration, g or micro strain from regression equations (5.1, 5.2 and 5.3).

Figures 5.4, and 5.5 show that the developed regression models can accurately

predict (interms of g and micro strain) tool condition to some extent. The error

rate of channel 1 (β1) of this model is calculated by using equation (5.4). The

calculated values are 4.82% for the cutting speed 200 m/min, 11.41% for the

cutting speed 350 m/min and 22.6% for the cutting speed 500 m/min. The

deviation (or percentage of error) marginally increases with increase in cutting

speed as shown in Figure 5.6. This increasing error may be due to measurements

errors in the sensors at high cutting speed.

The error rate or deviation rate increases with increase in feed rate as shown

in Figures 5.7, 5.8 and 5.9 which is due to variation in dynamic cutting conditions

and increase in cutting force. If cutting force increases, the distortion of amplitude

also increases in both accelerometer and strain gauge bridge.

Similarly, error values increase with increase in depth of cut (shown in Figures
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Figure 5.5: Response of strain gauge. Variation of Micro strain Vs Cutting speed

for feed rate = 300 mm/min, depth of cut = 4 mm and flank wear = 0.3 mm

Figure 5.6: Response of accelerometer in cutting direction. Variation of Vibration

levels, g Vs Cutting speed for feed rate = 300 mm/min, depth of cut = 4 mm and

flank wear = 0.3 mm
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Figure 5.7: Response of accelerometer in cutting direction. Variation of Vibration

levels, g Vs Feed rate in cutting direction for cutting speed = 350 mm/min , depth

of cut = 4 mm and flank wear = 0.3 mm

Figure 5.8: Response of accelerometer in feed direction. Variation of Vibration

levels, g Vs Feed rate for cutting speed = 350 mm/min , depth of cut = 4 mm and

flank wear = 0.3 mm
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Figure 5.9: Response of strain gauge. Variation of Micro strain Vs Feed rate for

cutting speed = 350 mm/min , depth of cut = 4 mm and flank wear = 0.3 mm

5.10, 5.11 and 5.12) as well as increase in flank wear (Figures 5.13, 5.14 and 5.15).

This is due to increase in cutting force as discussed above.

5.2.3 Parametric Analysis

Based on the developed model (equations 5.1, 5.2 and 5.1) the effects of operating

parameters (namely, cutting speed, feed rate, depth of cut and flank wear) on

the magnitudes of vibration and micro strain have been calculated. To perform

the parametric study using these regression models, the relationships have been

drawn between the machining conditions and responses as shown in Figures 5.16

- 5.24.

Effect of depth of cut on cutting tool vibration and Strain

The relation between acceleration, g and depth of cut for various flank wear levels are as

shown in Figures 5.16 and 5.17. The tool vibration increases with increase in depth of cut

as well as increase in flank wear. This is due to an increase in cutting force which reduces
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Figure 5.10: Response of accelerometer in cutting direction. Variation of Vibration

levels, g Vs Depth of cut for cutting speed = 350 m/min, feed rate = 300 mm/min

and flank wear = 0.3 mm

Figure 5.11: Response of accelerometer in feed direction. Variation of Vibration

levels, g Vs Depth of cut for cutting speed = 350 m/min, feed rate = 300 mm/min

and flank wear = 0.3 mm
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Figure 5.12: Response of strain gauge. Variation of Micro strain Vs Depth of cut

for cutting speed = 350 m/min, feed rate = 300 mm/min and flank wear = 0.3

mm

Figure 5.13: Response of accelerometer in cutting direction. Acceleration, g Vs

Flank wear for cutting speed = 350 m/min , depth of cut = 4 mm and flank wear

= 0.3 mm
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Figure 5.14: Response of accelerometer in feed direction. Acceleration, g Vs Flank

wear for cutting speed = 350 m/min , depth of cut = 4 mm and flank wear = 0.3

mm

Figure 5.15: Response of strain gauge. Variation of Micro strain Vs Feed rate for

cutting speed = 350 mm/min , depth of cut = 4 mm and flank wear = 0.3 mm
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Figure 5.16: Response of accelerometer in cutting direction. Acceleration, g Vs

Depth of cut for cutting speed = 500 m/min, feed rate = 500 mm/min

stiffness of the cutting tool. It is observed that, in all cases the amplitude of vibration in

terms of acceleration, g is small up to 0.3 mm flank wear level due to small variation in

cutting force. In case of strain as a response, the variation in strain level is also low up to

0.3 mm flank wear level due to small variation (Figure 5.18) in cutting force, but there is

a sudden rise in strain beyond 0.3 mm flank wear due to increase in cutting force.

Effect of Feed rate, Cutting speed on cutting tool vibration and Strain

The relationships between machining parameter feed rate and acceleration, g for

various flank wear levels are shown in Figures 5.19 (channel 1) and 5.20 (channel 2). The

amplitude of vibration g, increases with increase in feed rate which results in increased

dynamic cutting force. The increase in dynamic cutting force is associated with

reduction in the stiffness of the cutting tool. The variation in strain level is low (Figure

5.21) up to 0.2 mm flank wear level due to small variation in cutting force. Similarly the

effects of cutting speed for various flank wear levels are shown in Figures 5.22 and 5.23.

Increase in cutting speed marginally reduces the cutting force and hence it will reduce
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Figure 5.17: Response of accelerometer in feed direction. Acceleration, g Vs

Depth of cut for cutting speed = 500 m/min, feed = 500 mm/min

Figure 5.18: Response of strain gauge. Micro strain Vs Depth of cut for Cutting

speed = 500 m/min, feed = 500 mm/min
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Figure 5.19: Response of accelerometer in cutting direction. Acceleration, g Vs

Feed rate for cutting speed = 500 m/min, depth of cut = 5 mm

the vibration and strain levels. The variation in strain level is low up to 0.2 mm flank

wear level due to very small variation (Figure 5.24) in cutting force.



Parametric Analysis 76

Figure 5.20: Response of accelerometer in feed direction. Acceleration, g Vs Feed

rate for cutting speed = 500 m/min, depth of cut = 5 mm

Figure 5.21: Response of strain gauge. Micro strain Vs Feed rate for cutting speed

= 500 m/min, depth of cut = 5 mm
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Figure 5.22: Response of accelerometer in cutting direction. Acceleration, g Vs

Cutting speed for feed rate = 500 mm/min, depth of cut = 5 mm

Figure 5.23: Response of accelerometer in feed direction. Acceleration, g Vs

Cutting speed for feed rate = 500 mm/min, depth of cut = 5 mm
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Figure 5.24: Response of strain gauge. Micro strain Vs Cutting speed for feed rate

= 500 mm/min, depth of cut = 5 mm

5.3 Cutting edge chipping Failure

Health monitoring of a cutting tool during the machining process is an important

issue especially from the quality of the product point of view. Health monitoring

of a cutting tool deals with one or more of the following tasks [75]:

• Detection of collisions, i.e. unwanted movements between workpiece and

cutting tool or machine tool,

• Detection or identification of tool fracture (cutting edge breakage), and

• Identification of gradual wear (flank, crater, nose wear etc) caused by

abrasion or other influences.

Out of the above three tasks, first two are difficult tasks to control in a systematic

manner. The detection of collision and cutting edge breakage at micro/macro

level should be monitored in real time to avoid any major damage to the
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machine tool as well as workpiece. Most of the literature [7] deals with gradual

wear which is caused by friction between cutting tool and workpiece, and

cutting tool and chip and it depends on various cutting conditions such as

cutting speed, feed rate, depth of cut, condition of coolant, cutting tool position

and so on. In any machining process the growth of gradual tool wear [30] is

slow, and the cutting tool should be replaced or reconditioned after its life

period is over. In contrast to the gradual wear, the chipping (cutting edge

breakage) failure occurs instantaneously due to a sudden impact to the cutting

tool. If it is possible to identify its occurrence, then the system should have

provision to take a corrective action almost instantaneously to save the

workpiece and the machine tool from any further damage. For identification of

the cutting edge breakage, this chapter focuses on the two issues of the research

problem: (i) to create an artificially chipped off tool (or cutting edge broken tool)

in a controlled manner using EDM process, and (ii) to capture the signals when

the chipped off cutting tool continues to machine a workpiece under different

machining conditions using accelerometers and strain gauges.

Cutting tool health (gradually worn-out as well as chipped off(micro/macro)

cutting tool condition) monitoring techniques [23, 30] can be useful especially in

an automated cutting process and unmanned factory to prevent any damage to

the cutting tool, machine tool and workpiece. In any metal cutting operation,

one of the major hurdles in realizing its complete automation is the prediction of

the state of the cutting tool. Cutting tool condition monitoring can help in

on-line realization of the tool wear, tool breakage, and workpiece surface

roughness.

Vibration and cutting force monitoring techniques applied to the detection of

tool wear have been reported in reference [81].The failure mechanism called

”chipping” occurs when small pieces of the carbide insert (or any other tool) are
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separated away from the cutting edge during the machining process(Figure 3.7).

Eventually, increased cutting force at the chipped off cutting edge causes the

cutting edge to become inefficient and leading quickly to catastrophic failure.

Chipping may not always be obvious. Some chipping occurs microscopically,

where appearance may be confused with normal flank wear unless examined

closely. Chipping may result due to a variety of conditions, namely, poor

rigidity in the tooling set-up, weak cutting edge, deflecting workpiece,

inadequate machine tool and varying cutting load due to various reasons. A

chipped off cutting tool has been created using EDM process, as shown in

Figures 5.25 a and 5.25b.

(a) (b)

Figure 5.25: Chipped off cutting edge of the tool produced by EDM process (a)

Top view of chipped off portion (b) Side view of chipped off portion

Four factors central composite rotatable design [57] with five levels (-2, -1, 0,

1, and 2) has been chosen to minimize the number of experiments. It contains 31

experiments with degrees of freedom equal to 30. The independent variables in

this study are cutting speed, feed rate, depth of cut and chipped off depth. The

independent variables were kept at five different levels as shown in Table 5.5.
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Table 5.5: Levels of Independent variables

Levels Cutting speed

in m/min

Feed rate in

mm/min

Depth of cut

in mm

Chipped off

depth in mm

-2 200 100 3.0 0.0

-1 275 200 3.5 0.2

0 350 300 4.0 0.3

1 425 400 4.5 0.4

2 500 500 5.0 0.5

Two responses or dependent variables (strain due to bending action of a cutting

tool and acceleration, g in cutting direction) are measured for various machining

conditions. Tungsten carbide cutting tools [58] (throw - away inserts DNMG

150608) were used in turning operation. The work piece material is EN-8 alloy

steel and it is supported by a tail stock to avoid excessive overhang.

The cutting phenomenon has been analyzed by using power spectrum of

vibration and strain gauge signals. Typical power spectral plots are shown in

Figures 5.26 and 5.27. It is noted that in power spectral curves the amplitude of

vibration values and micro strain values are dominated at the tool’s natural

frequency (Figure 5.3). It is observed that the peaks of vibration and strain

gauge signals exhibit response in dynamic frequency range especially at the

cutting tool natural frequency (3.91 kHz as shown in Figure 5.26) with respect to

various machining conditions. In this analysis, the effects of four cutting

parameters have been analyzed with respect to response parameters in-terms of

vibration and strain.

Input parameters (amplitude of acceleration, g and strain) to the ANOVA are
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Figure 5.26: Response of accelerometer in cutting direction (Cutting speed = 350

m/min, Feed = 400 mm/min, depth of cut = 4 mm and chipped off depth = 0.3

mm)

obtained from the sensors output and the models are described in the later part

of this section. In order to develop an empirical model, statistical analysis is

performed on the experimental data to determine the most significant input

machining parameters with respect to output responses (acceleration, g and

strain).

Regression models have been developed using 31 experimental conditions as

per desired central composite rotatable experimental design shown in Table 4.7.

In central rotatable [57] composite design, the response of the system and input

parameters are taken to have the following relationships (equation 5.5)

Yu = b0 +
∑

bixiu +
∑

biix
2
iu +

∑
bijxiuxju (5.5)

where, Yu = output response of the system , xiu = known as input parameters to

the system, and b0, bi, bii, bij are coefficients.
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Figure 5.27: Response of strain gauge (Cutting speed = 350 m/min, Feed = 400

mm/min, depth of cut = 4 mm and chipped off depth = 0.3 mm)

The regression models (equations 5.6 and 5.7) have been developed using

equation (5.5) to predict the output responses (acceleration and strain). The

developed models are significant with confidence limit of 99% and as can be

seen in ANOVA in Tables 5.6 and 5.7. The value of F-ratio in both the cases is

higher than the tabulated value. Further if P≤0.05 indicates that the parameter is

significant at 99% confidence level. The coefficients of cutting speed in both the

models are negative while for feed rate and depth of cut are positive.

From the ANOVA, all the values of P ≤ 0.01 indicate that the effect of the

parameter is significant. The detailed ANOVA (Tables 5.6 and 5.7) has been

performed for each level of chipped off depth with respect to machining input

parameters as shown in Tables 5.6 and 5.7. In Table 5.6, the value of

P ≥ 0.01(0.039) for the machining parameter depth of cut which is not

significant. This may be due chipped off cutting edge at desired depth of cut.

From the results of ANOVA, it is observed that F ratios were large enough and
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indicate that the developed models are appropriate.

β = 0.475− 0.12× 10−2x1 + 0.207× 10−3x2 − 0.11x3 − 0.255x4 + 0.2× 10−5x2
1

−0.1× 10−6x2
2 + 0.117× 10−1x2

3 − 0.22x2
4 − 0.1× 10−7x1x2 − 0.27× 10−4x1x3

−0.44× 10−3x1x4 − 0.8× 10−5x2x3 − 0.93× 10−4x2x4 + 0.96× 10−1x3x4

(5.6)

where β = Acceleration, g in cutting direction, x1 = cutting speed, x2 = feed rate,

x3 = depth of cut, x4 = chipped off depth.

κ = −21.7104− 0.11× 10−2x1 + 0.283x2 + 29.122x3 − 353.029x4 + 0.32× 10−3x2
1

+0.1× 10−3x2
2 + 2.496x2

3 + 26.910x2
4 − 0.27× 10−3x1x2 − 0.126x1x3 + 0.602x1x4

−0.464× 10−1x2x3 + 0.8× 10−2x2x4 + 45.444x3x4

(5.7)

where, κ= Micro strain.

5.3.1 Comparison of experimental and model value for chipped

off cutting tool

The percent difference (∆) between experimental (E) and the model value (R)

has been calculated by using following equation (5.8)

∆ =
R− E

R
× 100 (5.8)

where ∆ = Percentage of error rate, R = Calculated value from regression

equations, E= Experimental value. The calculated percentage of error rate

values are 24.69% for the cutting speed 200 m/min, 8.14% for the cutting speed

300 m/min and 7.89% for the cutting speed 500 m/min. The deviations (or

percentage of errors) increased with decrease in cutting speed as shown in

Figure 5.28. This indicates that the model is more appropriate at higher cutting
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Table 5.6: ANOVA for effect of machining parameters with respect to dynamic

response of accelerometer in cutting direction(channel 1)
Source DF SS MS F P
Regression 14 0.0242976 0.0017355 9.94 0
Residual Error 16 0.0027941 0.0001746
Total 30 0.0270917
Predictor Coef SE Coef T P
Constant 0.03552 0.004995 7.112 0
Cutting speed -0.04939 0.005395 -9.156 0
Feed rate 0.02171 0.004751 4.025 0.001
Depth of cut 0.0121 0.002147 2.243 0.039
Chipped off depth 0.02022 0.008618 3.748 0.002
Source DF
Cutting speed 1
Feed rate 1 R2 = 0.897
Depth of cut 1
Chipped off depth 1

Table 5.7: ANOVA for effect of machining parameters with respect to dynamic

response of strain gauge bridge (channel 3)
Source DF SS MS F P
Regression 4 4932.3 1233.1 17.67 0
Residual Error 26 1814.8 69.8
Total 30 6747.1
Predictor Coef SE Coef T P
Constant -8.51 18.01 -0.47 0.641
Cutting speed -0.1327 0.02274 -5.84 0
Feed rate 0.06685 0.01705 3.92 0.001
Depth of cut 9.244 3.411 2.71 0.012
Chipped off depth 63.57 17.05 3.73 0.001
Source DF
Cutting speed 1
Feed rate 1 R2 = 0.884
Depth of cut 1
Flank wear 1



Parametric Analysis 86

speed compared to the lower cutting speed. Similarly the percentage of error

rate has been calculated for micro strain. The calculated percentage of error rate

values are 17.01% for the cutting speed 200 m/min, 16.87% for the cutting speed

300 m/min and 7.92% for the cutting speed 500 m/min. The deviations (or

percentage of errors) increased with decrease in cutting speed as shown in

Figure 5.29. This again indicates that the model is more appropriate at higher

cutting speed as compared to the lower cutting speed as discussed above.

Figure 5.28: Response of accelerometer in cutting direction. Acceleration , g Vs

Cutting speed for feed rate = 300 mm/min, depth of cut = 4 mm and chipped off

depth = 0.4 mm

5.3.2 Comparison of chipped off tool and gradual flank wear

tool

For automated industries and otherwise, it is important to differentiate between

the signals obtained in case for gradual worn out (in flank) tool and the chipped

off tool. It is observed (Figure 5.30) that acceleration, g value for a chipped off

tool is substantially more when compared with gradual worn out (flank wear)
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Figure 5.29: Response of strain gauge. Micro strain Vs Cutting speed for feed rate

= 300 mm/min, depth of cut = 4 mm and chipping depth = 0.4 mm

cutting tool. Similarly, the amplitude of strain decreases with increase in cutting

speed (Figure 5.31) and it is observed that the strain value is more for a chipped

off cutting tool as compared to a gradual worn out tool. This is due to fractured

cutting edge which obviously increases the cutting force.

Similarly for different machining conditions (cutting speed, feed rate, depth

of cut and chipped off depth ), the out response are analyzed and various graph

have been plotted like acceleration, g vs feed rate (Figure 5.30), g vs depth of cut

(Figure 5.31), g vs chipped off depth (Figure 5.32), micro strain vs feed rate

(Figure 5.33), micro strain vs depth of cut (Figure 5.34), micro strain vs chipped

off depth (Figure 5.35) and so on.

It is observed that in all the above cases the amplitude of acceleration, g as well

as amplitude of strain values are more for a chipped off cutting tool when

compared with a gradual worn out (flank wear) cutting tool. This is because of

fractured cutting edge which obviously increases the cutting force (rubbing

action between cutting tool and workpiece).
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Figure 5.30: Response of accelerometer in cutting direction. Acceleration, g Vs

Feed rate (Cutting speed = 350 m/min, depth of cut = 4 mm for chipped off

depth = 0.5 mm and flank wear = 0.5 mm tool

Figure 5.31: Response of accelerometer in cutting direction. Acceleration, g Vs

Depth of cut for cutting speed = 350 m/min, feed rate = 300 mm/min for chipped

off depth = 0.5 mm and flank wear = 0.5 mm tool
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Figure 5.32: Response of accelerometer in cutting direction. Acceleration, g Vs

Chipped off depth for cutting speed = 350 m/min, feed rate = 300 mm/min and

depth of cut = 4mm

Figure 5.33: Response of strain gauge. Micro strain Vs Feed rate for cutting speed

= 350 m/min, depth of cut = 4 mm, chipped off depth = 0.5 mm and flank wear

= 0.5 mm tool
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Figure 5.34: Response of strain gauge. Micro strain Vs Depth of cut for cutting

speed = 350 m/min, feed rate = 300 mm/min, chipped off depth = 0.5 mm and

flank wear = 0.5 mm tool)

Figure 5.35: Response of strain gauge. Micro strain Vs Chipped off depth for

cutting speed = 350 m/min, feed rate = 300 mm/min and depth of cut = 4mm)
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5.4 Remarks

Regression/empirical models for flank wear and chipping failure were

developed based on experimental results. The match between the regression

and experimental curves indicates the validity of the regression model, and the

ability of the system to measure the gradual flank wear and chipping failure of

cutting tools during the process. Applications of the current system are limited

to turning operations with negative inserts. However, in order to be utilize the

system commercially, a more versatile tool/transducer coupling system needs to

be developed to accommodate various tool holder designs and insert

geometries. This empirical model may be used to develop a feed back system to

monitor the cutting tool by fixing lower and higher range of acceleration, g

and/or micro strain values.



Chapter 6

Artificial Neural Network Design

6.1 Artificial Neural Network Design

An Artificial Neural Network (ANN) is an interconnected group of artificial

neurons that uses a mathematical or computational model for information

processing based on a connectionist approach to computation. In most cases an

ANN is an adaptive system that changes its structure based on external or

internal information that flows through the network.

In the present work, Neural Networks based diagnosis has been divided into

four phases. (i) Instrumentation and Data acquisition, (ii) Data analysis and

Signal processing (iii) Neural Network Architecture Design (iv) Network

training and Validation.

The experimental setup and data acquisition has already been discussed in

previous chapters.

Here, the salient features of Network Design and Network Training and

validation are described first.

92
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6.1.1 Artificial Neuron

The artificial neuron was developed to mimic the first order characteristics of the

biological neuron. An artificial neuron is an information processing unit that is

fundamental to the operation of a neural network. A set of inputs is applied,

each representing the output of another neuron. Each input is multiplied by a

corresponding weight, analogous to synaptic strength, and all the weighted

inputs are then summed to determine the activation level of the neuron. Figure

6.1 shows a typical model of neuron.

The three basic elements of the neuron model are described below.

Figure 6.1: Nonlinear Model of Neuron

a) Synapses

These are connecting links each of which is characterized by a weight or strength

of its own. wkj represents weighting factor between a signal xj at the input of the

sample j, and a neuron k.

b) Adder

It sums up the input signals weighted by the respective synapses of the neuron.

The operation is similar to that of linear adder.
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c) Activation function

It defines the output of a neuron in terms of activity level at its input. It limits

the amplitude of output of the neuron and introduces non-linearity in the

network. These are sometimes referred to as squashing functions as they are

used to limit the output in the definite small range irrespective of values of the

input. Activation functions for the hidden units are required to introduce

non-linearity into the network. Without non-linearity, hidden units would not

make nets more powerful than just plain perceptrons (which do not have any

hidden units, just input and output units). Almost any nonlinear function does

the job, although for back propagation learning, it must be differentiable and it

helps if the function is bounded; the sigmoidal functions such as logistic and tanh

are the most common choices. Some of the common transfer functions are

described in the Table 6.1.

The neuron also includes an externally applied threshold function, θk which has

the effect of lowering the net input of the activation function. On the other hand,

employing a bias term rather than threshold may increase the net input to the

activation function.

Table 6.1: Activation Functions

Function name Mathematical expression

Linear Activation Function ϕ(x) = x

Positive Linear Activation Function ϕ(x) = x ; for x ≥ 0 and

ϕ(x) = 0 ; for x ≤ 0

Hyperbolic Linear Tangent Sigmoid ϕ(x) = 2
1+exp(−ρx)

− 1

Logistic Sigmoid Activation Function ϕ(x) = 1
1+exp(−ρx)

In the expressions above, ρ is a constant, and ϕ(.) is the activation function. These

four activation functions are represented graphically in Figure 6.2.
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6.1.2 Network Architectures

The manner in which the neurons in a neural network are structured is intimately

linked with the learning algorithm used to train the network. Four general classes

of network architectures are:

a) Single Layer Feed Forward Network

This is a network of neurons organized in the form of layers. The simplest form of

a network consists of an input layer of source nodes that project on to an output

layer of neurons, but not vice versa. This is of feed forward type (Figure 6.3 a).

b) Multi-layer Feed Forward Network

It is similar to the one described above, except that it has one or more hidden

layers of neurons. Hidden layers of neurons are interfaces between the input

and output layers. It is observed that some problems converge better when these

hidden layers are used (Figure 6.3 b).

c) Recurrent Networks

A recurrent network distinguishes itself from the feed-forward network as it has

at least one feedback loop. For example, a recurrent network may consist of single

layer of neurons, with each neuron feeding its output signal back to the input of

all other neurons (Figure 6.3 c). A time delay may be introduced in the feedback

path. Recurrent networks typically operate with a discrete representation of data

and employ neurons with a hard-limiting activation function.

d) Lattice Structure

A lattice consists of a one or more multi-dimensional array of neurons with a

corresponding set of source nodes that supply the input signals to the arrays
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(Figure 6.3 d). The dimension of the lattice refers to the number of dimensions in

which the graph lies.

a b

c d

Figure 6.3: Network Architectures (a) Single layer feed forward neural network

(b) Feed forward neural network with one hidden layer (c) Recurrent Network

(d) One-Dimensional Lattice of 3-Neurons.

6.1.3 The Back-propagation Training Algorithm

The Back-propagation Training Algorithm (BPA) is a popular training algorithm.

Its major attraction is its suitability to a large number of applications and high
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rate of convergence. It is designed to solve the problems of choosing weight

values for layered artificial neural networks with feed forward connections from

input layer to hidden layer and then to the output layer. The algorithm performs

the input to output mapping by minimizing a cost function using a gradient

search technique. The cost function, which is equal to the mean squared

difference between the desired and the actual net output, is minimized by

making wide connection adjustments according to the error between the

computed and target output processing element values. There are two stages in

the development of a backpropagation algorithm, namely forward-pass and

backward-pass. During the forward pass all the weights of the network are

initialized randomly and the network outputs and the difference between the

actual and target output (i.e. the error) is calculated for the initialized weights.

During the backward step, the initialized weights are adjusted to minimize the

error by propagating the error backwards. The network outputs and error are

calculated again with the updated weights and the process repeats till the error

is acceptably small. These two steps are described below and the whole

algorithm can be represented schematically as shown in Figure 6.4.

Forward-Pass

Referring to Figure 6.4 the input vector p to the network is

xp = (xp1. . . . . .xpN)′ . (6.1)

where xpi represents the input attribute i for the vector p.

The net input to the hidden layer becomes

nethpj =
N∑

i=1

wh
jixpi + θh

j (6.2)

where wh
ji represents the weight of the layer h from node i to node j and θh

L

represents the threshold for the node L of the layer h.
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Figure 6.4: The three layer back propagation network architecture

The outputs from the hidden layer (which is input to the output layer) are

Oh
pj = ipj = fh

j (nethpj) (6.3)

Oh
pj is the output from the node j of the hidden layer h, fh

j is the activation

function at node j of the hidden layer h. The equations 6.2 and 6.3 are

represented graphically in Figure 6.5.

Figure 6.5: Output calculation at each node in the forward-pass
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In the above the net-input values at output layer unit are

netopk =
L∑

j=1

wo
kjipj + θo

k (6.4)

while the outputs at output units are

Oo
pk = f o

k (netopk) (6.5)

Individual error at each output unit is

δpk = ypk −Oo
pk (6.6)

from which the overall mean square error can be computed as

Ep =
1

2

M∑
k=1

δ2
pk (6.7)

Backward-Pass

Weight adjustment is carried out at the output layer through the following

procedure. Using equations 6.6 and 6.7, the mean square error, Ep can be

expressed as

Ep =
1

2

∑
(ypk −Oo

pk)
2 =

1

2

∑ [
yo

pk − f o
k (netopk)

]2 (6.8)

The weight change of an output layer weight is the negative gradient of Ep with

respect to output layer weights wo
kj and can be written as

∂Ep

∂wo
kj

= −(ypk −Oo
pk)

∂f o
k

∂(netopk)

∂(netopk)

∂wo
kj

(6.9)

However, using equation (6.4)

∂(netopk)

∂wo
kj

= (
∂

∂wo
kj

∑
wo

kjipj + θo
k) = ipj (6.10)
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and using equation (6.5)

∂f o
k

∂(netopk)
= f o

k (netopk) = Oo
pk(1− oo

pk) (6.11)

Therefore, the weight change at the output layer weight is

∆o
pw =

−∂Ep

∂wo
kj

= (ypk −Oo
pk)f

o
k (netopk)ipj (6.12)

Now denoting

δo
pk = (ypk −Oo

pk)f
o
k (netopk) (6.13)

the weight change at the output layer weights can be written as

∆o
pw = δo

pkipj (6.14)

To make the learning process smooth and to ensure that the weight changes take

place in the same direction, two network parameters - learning rate coefficient

η and momentum α - are introduced in lieu of direct application of the above

mentioned weights, so that

wo
kj(t + 1) = wo

kj(t) + η(ypk −Oo
pk)f

o
k (netopk)ipj + αwo

kj(t− 1) (6.15)

A small value of η implies that the network will have to make a large number of

iterations. Its value is normally kept between 0.05 and 0.9. It is often possible to

increase its value as the network error decreases, thereby increasing the speed of

convergence. Another way to increase convergence speed is by adopting an extra

momentum term while updating the weights. This additional term tends to keep

the weight changes in the same direction. The entire weight updating process at

the output layer can be represented schematically as shown in Figure 6.6.

While updating the weights for the hidden layers it should be noted that there

is no target output and therefore the adjustment of weights is proportional to

their initial contribution. From equations 6.4 and 6.5 one gets

Ep =
1

2

∑
k

[
ypk − f o

k

(∑
wo

kjipj + θo
k

)]2

(6.16)
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Figure 6.6: Output layer weight updating

The weight change of a hidden layer weights is the negative gradient of Ep with

respect to hidden layer weights wh
ji and is given by

∂Ep

∂wh
ji

= −
∑

k

(ypk −Oo
pk)

∂Oo
pk

∂(netopk)

∂(netopk)

∂ipj

∂ipj

∂(nethpj)

∂(nethpj)

∂wh
ji

(6.17)

and the individual terms on the right hand side of the above equation can be

expanded as

∂Oo
pk

∂(netopk)
=

∂(f o
k (netopk))

∂(netopk)
= f o

k (netopk) = Oo
pk(1−Oo

pk) (6.18)

∂(netopk)

∂ipj

=
∂

∑L
j=1 wo

kjipj + θo
k)

∂ipj

= wo
kj (6.19)

∂ipj

∂(nethpj)
=

∂(fh
j (nethpj))

∂(nethpj)
= fh

j (nethpj) = oh
pj(1− oh

pj (6.20)

∂(nethpj)

∂wh
ji

=
∂(

∑N
i=1 wh

jixpi + θh
j )

∂wh
ji

= xpi (6.21)
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Substituting the above equations (6.18)to (6.21) in equation 6.17 one gets

∆pw
h
ji = − ∂Ep

∂wh
ji

= xpiO
h
pj(1−Oh

pj)
∑

k

(ypk −Oo
pk)O

o
pk(1−Oo

pk)w
o
kj (6.22)

Network parameters η, α can be introduced in a manner similar to that in the case

of the output layer, to express the final weight change at the hidden layer as

wh
ji(t + 1) = wh

ji(t) + ηxpiO
h
pj(1− oh

pj)
∑

(ypk −Oo
pk)O

o
pk(1−Oo

pk)w
o
kj + αwh

ji(t− 1).

(6.23)

The entire weight updating process at hidden layer can be schematically

represented as shown in Figure 6.7.

Figure 6.7: Hidden layer weight updating
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6.1.4 Training Algorithms

Training is accomplished in a network by sequentially applying input vector, while

adjusting network weights according to a predetermined procedure. During training,

the network weights gradually converge to values such that each input vector produces

the desired output vector. Neural network toolbox in MATLAB provides fifteen

different learning functions. Those used in present study are briefly described below.

Gradient Descent Back-propagation (TRAINGD): updates the weight and bias values

according to gradient descent as follows.

dw = η × dEp

dw
, (6.24)

where w is the weight/bias variable, η is the learning rate, and Ep is the performance.

Resilient Back-propagation (TRAINRP): This training algorithm updates weights and

bias according to the following relationship

dw = ∆w × sign(gw), (6.25)

where ∆w are all initialized and gw is the gradient. At each iteration the elements of

∆w are modified. If an element of gw changes sign between two successive iterations

then the corresponding ∆w is decreased by certain value. If it maintains its sign then

corresponding ∆w is increased by certain value. This continuous change in the value of

∆w ensures gradual but faster convergence.

6.1.5 Probabilistic Neural Network (PNN)

Investigations were also carried out, during the present study, on the suitability of

probabilistic neural networks for fault identification. Probabilistic Neural Networks

(PNNs) find their application mainly in classification problems [72]. Some of the salient

features of such networks are briefly described here.

A Probabilistic Neural Network bases itself on Bayes’ Rule which describes the

probability of the presence of a particular fault conditional to the observation of a
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certain symptom as

P (Hi/E) =
P (E/Hi)P (Hi)∑
P (E/Hn)P (Hn)

(6.26)

where
P (Hi/E) the probability that fault Hi is present, given the symptom E.

P (E/Hi) probability that symptom E will be observed when fault Hi.

P (Hi) the apriori probability that fault Hi is present

in absence of any specific symptom.
The following computational procedure can be followed.

P (Hi) Information generally obtained from Machine History, or

otherwise taken as unity for all possible faults∑
P (E/Hn)P (Hn) this term in the denominator is constant for all i.

Given a symptom E, the network computes the conditional probability P (Hi/E) , of the

presence of faults (i = 1, 2, ..k). A comparison is then made

if P (Hi/E) > P (Hj/E) for all j 6= i, then the fault is Hi

or P (E/Hi) > P (E/Hj) for all j 6= i, then the fault is Hi .
P (E/Hi) is computed using the following

P (E/Hi) =
1

(2π)m/2σm
i ni

ni∑
j=1

[
−(E − Ei

j)
T (E − Ei

j)
2σ2

i

]
(6.27)

where
m number of observations e in every training symptom pattern E

ni number of training symptom patterns pertaining to the ith fault Hi.

σi smoothing parameter computed using radial basis functions.
The probabilistic neural network, in addition to the input layer, has two hidden Layers

and an output layer (Figure 6.8). Its major difference with a Backpropagation network is

that it can be constructed after only a single pass of the training data sets. Also, the

activation function is statistically derived from estimates of the probability density

functions based on training patterns.
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Figure 6.8: Probabilistic Neural Network Architecture

6.2 Data Acquisition, Storage and Display

A computer code has been developed in LabVIEW for data acquisition, data storage and

display. This program has the following adjustable features:

(i) Scan rate (set at 25000 samples/s).

(ii) Number of data points to be read before each display (set at 4096 data points).

(iii) Device and Channel numbers from which to acquire data

(set at Device No. 1 and Channel No. 1).

(iv) Frequency range (set at 10000 Hz).

A Hanning window is then applied to the acquired time domain signal. Fast Fourier

Transform (FFT) of the time signal is carried out and the FFT is displayed in ’real’ time

along with the time domain signal on the front panel. Provision is also made on the

front panel for the user to select the desired frequency range for FFT display.

Option is provided for logging the time domain data and frequency domain data into

the hard disc at any desired instant of time.

Figure 6.9 and Figure 6.10 show front panel and block diagram respectively of VI for data

acquisition.
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6.3 Fault Simulation

A variety of faults were simulated on the set-up. As a first step, the machine

was run without introduction of any fault. Signatures for such no-fault operation

establish the baseline data. This baseline data can then be used for comparison

with signatures obtained under faulty conditions.

Fault generation was carried out in the following steps.

6.3.1 Flank Wear

Flank wear Severity level I 0.0 mm

Severity level II 0.2 mm

Severity level III 0.3 mm

Severity level IV 0.4 mm

Severity level V 0.5 mm
Data was acquired for each of the above cases for each of the following

machining conditions.

Cutting speed a 200 m/min

b 350 m/min

c 500 m/min

Feed Rate a 100 mm/min.

b 300 mm/min.

c 500 mm/min.

Depth of cut a 3 mm.

b 4 mm.

c 5 mm.
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6.3.2 Chipping Failure

Chipping failure Severity level I 0.0 mm

Severity level II 0.2 mm

Severity level III 0.3 mm

Severity level IV 0.4 mm

Severity level V 0.5 mm
Data was acquired for each of the above cases for the following machining

conditions.

Cutting speed a 200 m/min.

b 275 m/min.

c 350 m/min.

d 425 m/min.

e 500 m/min.

Feed Rate a 100 mm/min.

b 200 mm/min.

c 300 mm/min.

d 400 mm/min.

e 500 mm/min.

Depth of cut a 3.0 mm.

b 3.5 mm.

c 4.0 mm.

d 4.5 mm.

e 5.0 mm.

Typical time domain signals for the Flank Wear cases (for severity levels 0.0 mm

- 0.5 mm) for fixed operating conditions (Cutting speed = 500 m/min, feed rate

= 500 mm/min and depth of cut = 5 mm) are given in Figures 6.11, 6.12 and 6.13.

Typical time domain signals for another set of operating conditions (Cutting

speed = 350 m/min, feed rate = 300 mm/min and depth of cut = 4 mm.) are
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given in Figures 6.14, 6.15 and 6.16.

Similarly, for Chipping failure cases the corresponding time domain Signals are

given in Figures 6.17, and 6.18. Typical time domain signals for another set of

operating conditions for chipping failure cases (Cutting speed = 350 m/min,

feed rate = 500 mm/min and depth of cut = 4 mm.) are given in Figures 6.19 and

6.20.

It can be readily seen from the time domain signatures that it is difficult to tell

one fault condition or severity level from another. The need for processing of the

raw time domain data is obvious.

In the present work (i) Frequency Domain Analysis and (ii) Statistical Analysis

is carried out to further process these signals. The processed (i) FFT data and (ii)

the statistical data are then fed as input to the Neural Networks developed for

diagnosis.

6.4 Finite Element Analysis of cutting tools

Finite element modeling and analysis have been carried out to study the

dynamic behavior of the cutting tool. It has been used to validate the

experimentally obtained natural frequency of the tool. From the FE analysis and

experimental results (Rap test), it is found that first natural frequency of the

cutting tool is 3.91 kHz. This analysis is useful to extract the information from

the sensors output in particular frequency domain analysis. These extracted

data are used to train and test the artificial neural networks.

The finite element method (FEM) model used as an explicit method, which is

more suitable for events with large nonlinear deformations at high strain rate

with complex contacts between surfaces, conditions typically expected in metal
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a b

c d

e .

Figure 6.11: Typical accelerometer time domain signal in cutting direction for (a)

new cutting tool (b) 0.2 mm flank wear cutting tool (c) 0.3 mm flank wear cutting

tool (d) 0.4 mm flank wear cutting tool (e) 0.5 mm flank wear cutting tool. Cutting

speed = 500 m/min, feed rate = 500 mm/min and depth of cut = 5 mm.
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a b

c d

e .

Figure 6.12: Typical accelerometer time domain signal in feed direction for (a)

new cutting tool (b) 0.2 mm flank wear cutting tool (c) 0.3 mm flank wear cutting

tool (d) 0.4 mm flank wear cutting tool (e) 0.5 mm flank wear cutting tool. Cutting

speed = 500 m/min, feed rate = 500 mm/min and depth of cut = 5 mm.
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a b

c d

e .

Figure 6.13: Typical strain gauge time domain signal for (a) new cutting tool (b)

0.2 mm flank wear cutting tool (c) 0.3 mm flank wear cutting tool (d) 0.4 mm flank

wear cutting tool (e) 0.5 mm flank wear cutting tool. Cutting speed = 500 m/min,

feed rate = 500 mm/min and depth of cut = 5 mm.
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a b

c d

e .

Figure 6.14: Typical accelerometer time domain signal in cutting direction for (a)

new cutting tool (b) 0.2 mm flank wear cutting tool (c) 0.3 mm flank wear cutting

tool (d) 0.4 mm flank wear cutting tool (e) 0.5 mm flank wear cutting tool. Cutting

speed = 350 m/min, feed rate = 300 mm/min and depth of cut = 4 mm.
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a b

c d

e .

Figure 6.15: Typical accelerometer time domain signal in feed direction for (a)

new cutting tool (b) 0.2 mm flank wear cutting tool (c) 0.3 mm flank wear cutting

tool (d) 0.4 mm flank wear cutting tool (e) 0.5 mm flank wear cutting tool. Cutting

speed = 350 m/min, feed rate = 300 mm/min and depth of cut = 4 mm.
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a b

c d

e .

Figure 6.16: Typical strain gauge time domain signal for (a) new cutting tool (b)

0.2 mm flank wear cutting tool (c) 0.3 mm flank wear cutting tool (d) 0.4 mm flank

wear cutting tool (e) 0.5 mm flank wear cutting tool. Cutting speed = 350 m/min,

feed rate = 300 mm/min and depth of cut = 4 mm.
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a b

c d

e .

Figure 6.17: Typical accelerometer time domain signal in cutting direction for (a)

new cutting tool (a) 0.2 mm chipping failure cutting tool (b) 0.3 mm chipping

failure cutting tool (c) 0.4 mm chipping failure cutting tool (d) 0.5 mm chipping

failure cutting tool. Cutting speed = 350 m/min, feed rate = 300 mm/min and

depth of cut = 4 mm.
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a b

c d

e .

Figure 6.18: Typical strain gauge time domain signal for (a) new cutting tool (b)

0.2 mm chipping failure cutting tool (c) 0.3 mm chipping failure cutting tool (d)

0.4 mm chipping failure cutting tool (e) 0.5 mm chipping failure cutting tool.

Cutting speed = 350 m/min, feed rate = 300 mm/min and depth of cut = 4 mm.
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a b

c d

e .

Figure 6.19: Typical accelerometer time domain signal in cutting direction for (a)

new cutting tool (b) 0.2 mm chipping failure cutting tool (c) 0.3 mm chipping

failure cutting tool (d) 0.4 mm chipping failure cutting tool (e) 0.5 mm chipping

failure cutting tool. Cutting speed = 350 m/min, feed rate = 500 mm/min and

depth of cut = 4 mm.
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a b

c d

e .

Figure 6.20: Typical strain gauge time domain signal for (a) new cutting tool (b)

0.2 mm chipping failure cutting tool (c) 0.3 mm chipping failure cutting tool (d)

0.4 mm chipping failure cutting tool (e) 0.5 mm chipping failure cutting tool.

Cutting speed = 350 m/min, feed rate = 500 mm/min and depth of cut = 4 mm.
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cutting like chip formation. In FEM, it is assumed that a part is divided into

many small elements and it is subjected to deformation due to application of

external load. The main idea in finite element method is to solve a complex

problem by replacing it with a simple problem. By using the existing

mathematical methods, in practice real or approximate solutions cannot be

found for many problems. However, finite element method can be used to find

approximate solutions for these problems. In finite element method, the solution

zone is composed of adjacent sub parts which are called finite elements. It can

be assumed that these sub parts are held together by nuts and screws. It is also

assumed that when the bonding is removed, the sub parts are separated.

An analysis calculates the effects of steady state conditions on a structure, while

ignoring inertia and damping effects, such as those caused by time-varying load.

In a static analysis a rigidity matrix is calculated for each element according to

the given specifications. These matrices are aggregated and the rigidity matrix

of the system is generated. The solution is the displacements of the nodes that

gives the unit displacements and strains. In this work, modal analysis is carried

out to analyse dynamic behaviour of cutting tool using ANSYS. DNMG type of

insert and the tool holder are modelled as of the same material. The mechanical

properties of the tool holder are given in Table 6.2. The tool holder is fixed from

the nodes that lie at the bottom and the top of the model in all degrees of

freedom. Besides, dynamic force also exists that act onto the tool holder.

Basic modal analysis involves Eigen value problems to calculate natural

frequency of the any system. The governing equation for Eigen value analysis of

the system is given by (equation 6.28)

M
∂2x

∂2t
+ Kx = f(t) (6.28)
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where M is mass of the system, K is stiffness of the system and x is the

displacement. Considering the homogeneous part of equation 6.28 and

assuming that the displacement response is harmonic is given by 6.29,

x(t) = X(ω)eiωt (6.29)

The structural Eigen problem can be written in the form,

Kφj = λjMφj, j = 1, 2, 3, ... (6.30)

where, λj = ω2
j is the jth Eigen value and φj is the jth Eigen vector. Solving the

above equation 6.30, we can find out the natural frequencies and mode shapes of

the systems.

In this thesis, modal analysis (ANSYS software) is used to determine the mode

shapes and the natural frequencies of the cutting tool structure that are

important in the design of a model for dynamic analysis. This can also be a

starting point for a more detailed harmonic response analysis.

Firstly, a model is built to define the element types (hexagonal shape), material

properties and the model geometry and the boundary condition are then

defined. As the next step, first 4 mode shapes are determined and natural

frequencies (with the values) are calculated. The natural frequencies and mode

shapes are important parameters for dynamic loading conditions. From this we

found following four natural frequencies as shown in Table 6.3. To validate the

ANSYS model, Rap test has been conducted (Figure 5.3). Both the experimental

(Rap test) and ANSYS results were compared. The mode shapes of the cutting

tool vibration is shown in Figures 6.21-6.24. In this Rap test, accelerometer is

kept on the tool holder and signal is recorded up to 5 kHz in the FFT analyser.

From this analysis, it is observe that the accelerometer responses are showing

peaks at a particularly in natural frequency of the tool in dynamic cutting
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Table 6.2: Mechanical properties of the tool holder and workpiece

Tool mechanical properties Tool holder workpiece

Density 8.10 g/cm3 7.85 g/cm3

Poission ratio 0.3 0.3

Young’s modulus 210 kN/mm2 200 kN/mm2

Figure 6.21: Mode of vibration in feed direction

conditions. This is very helpful to extract the information from various signals

both accelerometer and strain gauge responses.

6.5 Finite Element Analysis of workpiece

In the area of cutting tool condition monitoring, most of the research papers deal

with FEM analysis of cutting tool and only a few papers analysed workpiece.

During experimentation (cutting operations) the accelerometer responses were
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Figure 6.22: Mode of vibration in cutting direction

Figure 6.23: Torsional mode of vibration
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Figure 6.24: Mode of vibration in longitudinal direction

Table 6.3: Comparison of natural frequency of cutting tool

Mode number FEM analysis, Hz Rap test result, Hz

1 3956 3910

2 4196 4127

3 12232 limited up to 5 kHz

4 20020 limited up to 5 kHz
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Table 6.4: Comparison of natural frequency of workpiece

Mode number FEM analysis, Hz Rap test result, Hz

1 316 340

2 986 937

3 1407 limited up to 1 kHz

4 2595 limited up to 1 kHz

Figure 6.25: Typical assumed workpiece

observed in the frequency range of 300-500 Hz and show a negligible (small)

amplitude of vibration (peaks). This is due to response of workpiece. The

workpiece model has been developed (Figure 6.25) using ANSYS to study the

dynamic behaviour. Then the above procedure (FEM model of cutting tool) and

analysis (modal using ANSYS) is repeated for workpiece. These ANSYS results

were validated (Table 6.4) with experimental results (Rap test as shown in

Figure 6.30)and various mode shapes are shown in Figures (6.26 -6.29).

6.5.1 Remarks

Main aim of the thesis is to develop the sensor based TCM system. To achieve

this goal, FEM modelling and analysis have been carried out to study the
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Figure 6.26: First mode of vibration workpiece

Figure 6.27: Second mode of vibration workpiece
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Figure 6.28: Third mode of vibration workpiece

Figure 6.29: Fourth mode of vibration - workpiece
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Figure 6.30: Rap test - Workpiece

dynamic behaviour of the cutting tool. Solid modelling has been carried out to

using ANSYS software. The natural frequencies of the cutting tool and

workpiece are obtained from modal analysis. This method provides simple

approach to estimate the various modes of frequency in dynamic cutting

conditions. In general, sensor will yield various signals with different

amplitudes and frequencies, and it depends on various factors such as material

properties, stiffness, spindle speed and so on. From the FEM analysis and

experimental results (Rap test), it is found that first natural frequency of the

cutting tool is 3.91 kHz (Figure5.3). This analysis is very much useful to extract

the information from the sensors output in particular frequency domain

analysis. It is observed that, while analysing the sensor output signals, some

frequencies (Figure 6.30) are dominating in the range of 300 Hz to 500 Hz at low

level amplitudes. These frequencies are natural frequencies of the workpiece at

different modes. These frequencies may be ignored because of its low amplitude

(in the order of 10−5) when compared with tool vibration amplitude (in the
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order of 10−3). This analysis is mainly focused on cutting tool vibration and its

mode shapes.

6.6 Frequency Domain based diagnosis

Typical Fast Fourier Transforms of the time domain signals are given in Figures

6.31 - 6.35. For frequency domain based diagnosis the (a) back-propagation

algorithm and the (b) probabilistic network are employed. For statistical

parameter based diagnosis only back-propagation methodology is used. The

training and the test data, during the present study were generated on a CNC

GILDMISTER turning center.

6.6.1 Feature extraction

Extraction of relevant information from the acquired data is critical for

development of an effective diagnostic system. Prominent features are extracted

from the signals and fed as a input to train a neural network. In the present

work an algorithm is developed to automatically develop the feature vector

from the power spectrum signal. There are two important sets of frequency

components namely (i) operating frequency of spindle speed and (ii) the cutting

tool natural frequency. In this analysis, it is observed that 3.91 kHz is the

predominant frequency (varies between 3.8 kHz to 4.2 kHz) in the response

signals (Figure 6.34). This is the natural frequency of the cutting tool. This is

verified and validated with experimental Rap Test result (Figure 5.3).

6.6.2 Inputs for Neural Network

From the power spectrum signal the necessary information is extracted at

particular frequency (say 3.91 kHz) and these amplitudes of vibration from the

accelerometer and strain gauge signals are shown in the Table 6.5 for different
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a b

c d

e .

Figure 6.31: Typical accelerometer power spectrum signal in cutting direction for

(a) new cutting tool (b) 0.2 mm flank wear cutting tool (c) 0.3 mm flank wear

cutting tool (d) 0.4 mm flank wear cutting tool (e) 0.5 mm flank wear cutting tool.

Cutting speed = 500 m/min, feed rate = 500 mm/min and depth of cut = 5 mm.
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a b

c d

e .

Figure 6.32: Typical accelerometer power spectrum signal in feed direction for (a)

new cutting tool (b) 0.2 mm flank wear cutting tool (c) 0.3 mm flank wear cutting

tool (d) 0.4 mm flank wear cutting tool (e) 0.5 mm flank wear cutting tool. Cutting

speed = 500 m/min, feed rate = 500 mm/min and depth of cut = 5 mm.
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a b

c d

e .

Figure 6.33: Typical strain gauge power spectrum signal for (a) new cutting tool

(b) 0.2 mm flank wear cutting tool (c) 0.3 mm flank wear cutting tool (d) 0.4 mm

flank wear cutting tool (e) 0.5 mm flank wear cutting tool. Cutting speed = 500

m/min, feed rate = 500 mm/min and depth of cut = 5 mm.
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a b

c d

e .

Figure 6.34: Typical accelerometer power spectrum signal in cutting direction for

(a) new cutting tool (b) 0.2 mm chipping failure cutting tool (c) 0.3 mm chipping

failure cutting tool (d) 0.4 mm chipping failure cutting tool (e) 0.5 mm chipping

failure cutting tool. Cutting speed = 350 m/min, feed rate = 400 mm/min and

depth of cut = 4 mm.
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a b

c d

e .

Figure 6.35: Typical strain gauge power spectrum signal for (a) new cutting tool

(b) 0.2 mm chipping failure cutting tool (c) 0.3 mm chipping failure cutting tool

(d) 0.4 mm chipping failure cutting tool (e) 0.5 mm chipping failure cutting tool.

Cutting speed = 350 m/min, feed rate = 400 mm/min and depth of cut = 4 mm.
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levels of flank wear. These are also shown in in Figure 6.36. The data from

Figure 6.36 is used as input to train the neural network.

Table 6.5: Typical input vectors for neural networks
Ex No Sensor

number

FW = 0.5

mm

FW = 0.4

mm

FW = 0.3

mm

FW = 0.2

mm

New

insert
1 0.2330 0.1580 0.0298 0.0091 0.0107

1 2 0.2670 0.2450 0.0103 0.0089 0.0068
3 7.4488 4.2373 0.0141 0.0211 0.0014
1 0.0528 0.0079 0.0131 0.0043 0.0026

2 2 0.2370 0.0883 0.0065 0.0058 0.0037
3 0.0274 0.1118 0.0013 0.0057 0.0004
1 0.0456 0.0196 0.0026 0.0009 0.0020

3 2 0.1570 0.0277 0.0035 0.0025 0.0017
3 0.0100 0.0017 0.0006 0.0023 0.0002

Sensor 1 - Accelerometer in cutting direction , Sensor 2 - Accelerometer in

feed direction, Sensor 3 - Strain gauge and FW - Flank wear

6.6.3 Target Vectors for Training

The target vectors of neural networks are fixed as shown in Table 6.6. In Table 6.6,

the first column (1 0 0 0 0) indicates the level of flank wear as 0.5 mm. Similarly

the second column indicated the level of flank wear as 0.4, third indicate that

level of flank failure as 0.3, and so on.

Table 6.6: Typical target vectors
Flank wear, mm 0.5 0.4 0.3 0.2 0.0

1 0 0 0 0
Target 0 1 0 0 0
vectors 0 0 1 0 0

0 0 0 1 0
0 0 0 0 1
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a b

c d

e .

Figure 6.36: Typical input training vectors for (a) new cutting tool (b) 0.2 mm

flank wear cutting tool (c) 0.3 mm flank wear cutting tool (d) 0.4 mm flank wear

cutting tool (e) 0.5 mm flank wear cutting tool. Cutting speed = 500 m/min, feed

rate = 500 mm/min and depth of cut = 5 mm.
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6.6.4 Network Training and Testing

The neural network architecture, number of layers, nodes, transfer function and

training pattern chosen in the present study are shown in Table 6.7. We have

conducted 27 experiments with different combinations of machining conditions.

On taking flank wear levels of 0, 0.2, 0.3, 0.4 and 0.5 mm as a parameter, the total

number of experiments becomes 135(=27x5) as shown in Tables 4.4 - 4.6. Out of

these, 110 experiments with different machining conditions have been selected

for training and remaining 25 experiments are reserved for testing. Additionally,

training algorithms, number of nodes, transfer functions and number of layers

are varied to study the behaviour of networks and to arrive at an optimum

configuration.

For single flank wear, the number of input terms in an input vector is 3, i.e.

output responses of two accelerometers - in terms of vibration amplitude, g in

cutting, and feed directions, and third one is strain gauge bridge output.

In this neural networks model, six layers feed forward back propagation neural

networks with one input, four hidden layers and one-output layer were used.

The training is carried out for five levels of flank wear (0, 0.2, 0.3, 0.4 and 0.5

mm). Different combinations of architecture were tried out for five different

levels of flank wear.

The behaviour of neural networks architecture depends upon various

parameters like input patterns to networks, target vectors (Table 6.6), number of

layers, number of neurons, activation function, training function, number of

epochs and so on. In this thesis an attempt has been made to classify the flank

wear levels by using ANN.

The trainrp is found to be most robust training algorithm in terms of accuracy

and time taken. The performance of various neural network architectures have

been analyzed and some of them are described in Table 6.7. Out of these trials,

Trial number 15 gives better convergence (Figure 7.27a), less computation time and
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response of network is good enough to classify the flank wear levels. In Trial No 17, the

network is not allowed to run for 20000 epochs because the rate of divergence increases

with increases in number of epochs (after 1500 cycles) as shown in Figure 7.27b. It never

converged to achieve the target level of accuracy 1 × 10−3 within 20000 epochs. On trial

and error basis, the training of networks is allowed to run up to the maximum number

of epochs like Trial No 5. However, this trial did not converge to the target level as

shown in Figure 7.27c. Similarly, an attempt has been made to reduce the computational

timings by selecting proper architecture of neural works (Trial No 15 of architecture

130-120-120-120-5). The same architecture was used for both training and testing

exercises. The typical testing results are shown in Tables 6.8 and 6.9 respectively for the

the Trial No 15 and 18 for the experiment number 25.
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Table 6.8: Output data for Trial No 15 (130-120-120-120-5)
Ex No 25 (Flank wear levels, mm)

0.5 0.4 0.3 0.2 0.0
Output 1.000 0.000 0.000 0.002 -0.011
vectors -0.003 0.999 0.000 -0.005 0.003

-0.001 -0.001 0.991 -0.004 0.011
-0.001 0.000 -0.003 0.991 0.013
-0.001 -0.001 0.002 -0.005 0.954

Table 6.9: Output data for Trial No 18 (130-120-120-100-5)
Ex No 25 (Flank wear levels, mm)

0.5 0.4 0.3 0.2 0.0
Output 1.000 0.029 0.059 0.100 0.100
vectors 0.053 0.982 0.065 -0.100 -0.100

0.008 0.008 0.993 -0.086 -0.100
-0.049 -0.048 -0.038 1.000 -0.099
0.070 0.069 -0.091 -0.100 0.963

6.7 Network model to predict both flank wear and

chipping failure

An ANN model for predicting and making a distinction between flank and chipping

problems of different severity levels has also been attempted. The Chipping failure data

are shown in the Tables 6.10 and 6.11. For Flank Wear experimental data is the same as

given previously in Tables 4.4, 4.5 and 4.6.

The combined input vectors for doing such prediction is typically shown in Figures

6.38 and 6.39 and Table 6.12. The target vectors of neural networks are fixed as shown in

Table 6.13. In Table 6.13, the first column (1 0 0 0 0 0 0 0 0 0) indicates the level of flank

wear as 0.5 mm. Similarly the second column indicates the level of chipping failure as

0.5, third indicates the level of flank failure as 0.4.
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Table 6.10: Accelerometer data for chipping failure
Experimental conditions Acceleration , g for different levels of chipping failure (mm)

No CS FR DOC 0.5 0.4 0.3 0.2 0.0
1 500 500 5 0.4194 0.2923 0.0519 0.0155 0.0177
2 500 500 4 0.0950 0.0147 0.0228 0.0074 0.0043
3 500 500 3 0.0821 0.0363 0.0046 0.0014 0.0033
4 500 300 5 0.1366 0.0551 0.0230 0.0192 0.0116
5 500 300 4 0.0700 0.0147 0.0087 0.0098 0.0020
6 500 300 3 0.0626 0.0065 0.0082 0.0038 0.0023
7 500 100 5 0.0886 0.0061 0.0034 0.0048 0.0101
8 500 100 4 0.0558 0.0054 0.0034 0.0034 0.0052
9 500 100 3 0.0428 0.0023 0.0005 0.0010 0.0009
10 350 500 5 0.4950 0.4311 0.1827 0.0338 0.0183
11 350 500 4 0.3600 0.0370 0.0381 0.0090 0.0059
12 350 500 3 0.0569 0.0205 0.0066 0.0050 0.0056
13 350 300 5 0.4554 0.0844 0.0430 0.0218 0.0136
14 350 300 4 0.2772 0.0346 0.0157 0.0145 0.0101
15 350 300 3 0.0495 0.0096 0.0128 0.0072 0.0027
16 350 100 5 0.3402 0.0644 0.0183 0.0112 0.0106
17 350 100 4 0.1244 0.0213 0.0168 0.0016 0.0065
18 350 100 3 0.0193 0.0014 0.0045 0.0019 0.0015
19 200 500 5 0.4770 0.4903 0.4037 0.0587 0.0252
20 200 500 4 0.4176 0.1082 0.0419 0.0154 0.0157
21 200 500 3 0.3168 0.0120 0.0161 0.0148 0.0086
22 200 300 5 0.4338 0.1149 0.0454 0.0751 0.0218
23 200 300 4 0.2934 0.0720 0.0191 0.0167 0.0150
24 200 300 3 0.2844 0.0141 0.0101 0.0076 0.0032
25 200 100 5 0.1908 0.1134 0.0252 0.0219 0.0185
26 200 100 4 0.1103 0.0344 0.0170 0.0157 0.0087
27 200 100 3 0.0335 0.0077 0.0135 0.0086 0.0061

CS=Cutting speed FR=Feed rate DOC=Depth of cut
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Table 6.11: Strain gauge data for chipping failure
Experimental conditions Micro strain for different levels of chipping failure (mm)

No CS FR DOC 0.5 0.4 0.3 0.2 0.0
1 500 500 5 16.3874 8.5170 0.0269 0.0390 0.0024
2 500 500 4 0.0604 0.2246 0.0025 0.0105 0.0007
3 500 500 3 0.0220 0.0033 0.0012 0.0042 0.0004
4 500 300 5 1.8846 0.0422 0.0048 0.0136 0.0022
5 500 300 4 0.0492 0.0062 0.0021 0.0032 0.0003
6 500 300 3 0.0038 0.0022 0.0004 0.0010 0.0004
7 500 100 5 0.1100 0.7851 0.0013 0.0001 0.0013
8 500 100 4 0.0311 0.0159 0.0005 0.0010 0.0003
9 500 100 3 0.0033 0.0021 0.0005 0.0002 0.0002
10 350 500 5 30.738 11.630 0.7487 0.0393 0.4716
11 350 500 4 1.3068 0.0284 0.1381 0.0343 0.0025
12 350 500 3 0.2588 0.0090 0.0115 0.0289 0.0005
13 350 300 5 2.3883 3.6624 0.2421 0.0331 0.0243
14 350 300 4 0.7416 0.0208 0.0457 0.0036 0.0006
15 350 300 3 0.1599 0.0033 0.0303 0.0020 0.0003
16 350 100 5 0.1402 0.1601 0.0027 0.0003 0.0014
17 350 100 4 0.1067 0.0201 0.0024 0.0012 0.0005
18 350 100 3 0.0593 0.0023 0.0013 0.0018 0.0000
19 200 500 5 31.169 28.083 24.411 1.2135 0.6423
20 200 500 4 9.3221 0.6400 10.756 0.0245 0.0272
21 200 500 3 0.7077 0.1461 0.0320 0.0012 0.0109
22 200 300 5 5.4740 5.0013 0.8272 0.0447 0.0333
23 200 300 4 0.9535 0.0283 0.0613 0.0081 0.0218
24 200 300 3 0.2994 0.0073 0.0378 0.0007 0.0082
25 200 100 5 0.3190 0.1980 0.0210 0.0056 0.0013
26 200 100 4 0.2075 0.0570 0.0021 0.0015 0.0025
27 200 100 3 0.0629 0.0035 0.0017 0.0009 0.0002

CS = Cutting speed FR = Feed rate DOC = Depth of cut
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a

b

c
Figure 6.37: (a) Convergence pattern of back propagation networks for Trial No

15 (b) Convergence pattern of back propagation networks for Trial No 17 (c)

Convergence pattern of back propagation networks for Trial No 5.
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a b

c d

e f

Figure 6.38: Typical input training vectors for (a) 0.5 mm flank wear cutting tool

(b) 0.5 mm chipping failure cutting tool (c) 0.4 mm flank wear cutting tool (d)

0.4 mm chipping failure cutting tool (e) 0.3 mm flank wear cutting tool (f) 0.3

mm chipping failure cutting tool. Cutting speed = 500 m/min, feed rate = 500

mm/min and depth of cut = 5 mm.
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g h

i j
Figure 6.39: Typical input training vectors for (g) 0.2 mm flank wear cutting

tool (h) 0.2 mm chipping failure cutting tool (i) new cutting tool (Flank wear)

(j) new cutting tool (Chipping failure). Cutting speed = 500 m/min, feed rate =

500 mm/min and depth of cut = 5 mm.
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6.7.1 Neural Network Training and Testing

Number of layers, nodes, transfer function and training pattern are varied as

shown in Table 6.14 and their performances are compared. Feed forward back

propagation algorithm is chosen for training and testing the experimental data.

Out of 135 experiments, 110 experiments with different machining conditions

were selected for training and remaining twenty five experimental data were

reserved for testing.

In this work, six layers feed forward back propagation neural networks with one

input, four hidden layers and one-output layer were used. The training is

carried out for five levels of flank wear as well as chipping failure (0, 0.2, 0.3, 0.4

and 0.5 mm). Different combinations of architecture were tried out for five

different levels of flank wear. Trial number 6 gave better convergence (Figure

6.40a), consumed less computation time and the response of network was good

enough to classify the flank wear levels. On trial and error basis, the training of

networks is allowed to run up to the maximum number of epochs. Trial number

4 did not converge to the target level as shown in Figure 6.40b. An attempt was

made to reduce the computational timings by selecting proper architecture of

neural works. Trial number 6 with architecture 150-140-130-120-10 consumed

less time. The same architecture was used for both training (target vectors are

shown in Table 6.13) and testing the experimental data. The typical testing

results are shown in Tables 6.15 and 6.16 for Trial No 6 and 7 respectively.
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a

b

Figure 6.40: (a) Convergence pattern of neural networks for Trial No 6 (b)

Convergence pattern of neural networks for Trial No 4.
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6.8 Probabilistic Neural Networks (PNN)

Probabilistic neural network based three-layer feed forward network consisting

of an input layer, a pattern layer and a summation layer as shown in Figure 6.41.

Figure 6.41: Structure of the probabilistic neural network (PNN)

The network is trained for five different wear levels with the same training

data sets (Tables 4.4, 4.5 and 4.6) that were used for the Back propagation

network. One hundred and ten data sets were used for training and twenty five

sets were used for validation. The advantage of the PNN networks is that they

are fast in comparison to other type of networks. Performance of the PNN

network in classifying the faults correctly is shown in Figure 6.42. It is observed

that 0.4 mm and 0.5 mm levels of flank wear get classified well. At lower of

flank wear levels, the strain as well as vibration signatures do not show much

variation and therefore data sets to PNN do not change much between flank

wear levels from 0 to 0.3 mm.
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Figure 6.42: Typical performance of probabilistic neural network

6.9 Network model based on statistical parameters

It was also decided to carry out an exercise characterization of the cutting

phenomenon using statistical parameters of the time domain vibration and

strain gauge signals.

For these signals, following four statistical parameters were evaluated [73] as

follows: Mean (µ), Standard deviation (σ), Skewness (S) and Kurtosis (K).

Mean:

µ = X =
1

N

N∑
i=1

Xi (6.31)

Standard deviation:

σ =

√√√√ 1

N

N∑
i=1

(Xi − µ)2 (6.32)

Skewness (S) is a measure of the asymmetry of the data around the sample mean.

The skewness of a normal distribution (or any perfectly symmetric distribution)

is zero. Skewness is the third statistical moment of distribution given by,
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S =
1

N

N∑
i=1

E(Xi − µ)3

σ3
(6.33)

where E(Xi) is the expected value of Xi for ith value of data.

Kurtosis of a distribution is the fourth statistical moment defined as

K =
1

N

N∑
i=1

E(Xi − µ)4

σ4
(6.34)

Above defined statistical parameters are calculated using a Matlab code and the

computed quantities are shown in Table 6.17.

Table 6.17: Typical input vectors for neural networks
Sensors Statistical

parameters

New

insert

FW = 0.2

mm

FW = 0.3

mm

FW = 0.4

mm

FW = 0.5

mm
Accelero- Mean 0.0003 0.0006 0.0016 0.0023 0.0054
meter in Std deviation 0.1295 0.1324 0.1553 0.165 0.2228
cutting Skewness 0.0032 0.0088 0.0173 0.0204 0.0424
direction Kurtosis 1.4094 2.0114 2.198 2.5671 2.6551
Accelero- Mean 0.0001 0.0004 0.0012 0.0023 0.0055
meter in Std deviation 0.0523 0.0591 0.0735 0.1007 0.2199
feed Skewness 0.0422 0.0459 0.0479 0.0868 0.1102
direction kurtosis 1.4222 4.1572 4.1659 6.5615 6.8949
Strain Mean 0.0056 0.0416 1.2927 8.1621 24.179
gauge Std deviation 0.6057 0.8076 4.7507 24.746 64.218
signal Skewness 0.0048 0.0713 0.1553 3.5505 3.8316

Kurtosis 2.1843 2.9487 2.9652 16.78 17.487
FW - Flank wear

6.9.1 Statistical Parameter Variation with Machining Conditions

These statistical parameters are also shown in Figures 7.33 - 7.36. It can be seen

from these figures that all the statistical parameters increase with increase in flank

wear. As the flank wear increases, frictional force between the flank face of the

cutting tool and work piece surface also increases which causes an increase in

cutting force and feed force both. Hence, there is an increase in the values of the
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mean vibration level, g, in the cutting direction as well as in the feed direction

(Figure 7.33a and Figure 7.33b). Increase in the magnitude of force also increases

strain as shown in Figure 7.33c. However, increase in strain is not significant up

to 0.2 mm flank wear because the change in the cutting force is also small due

to modest variation in the flank wear. It is noted that the magnitude of mean

vibration signal, g (Figure 7.33a) decreases with increase in cutting speed. This

is due to increase in cutting speed decreases the cutting force. In addition to that

the same effect is observed in the response of strain gauge (Figure 7.33c).

Standard deviation (equation 6.32) is the most common measure of statistical

dispersion, and it indicates the degree of spread of the values in a data set from

its mean. Since the vibration amplitude, g is increasing with increase in flank

wear, the standard deviation (dispersion) of vibration amplitude also increases

with increase in flank wear. Variation in standard deviations of vibration

amplitude with flank wear is shown in Figure 7.34a for sensor 1 (Accelerometer)

which is placed in cutting direction and sensor 2 (Accelerometer) which is

placed in feed direction as shown in Figure 7.34b. Figure 7.34c shows the effect

of a change in flank wear on the standard deviation of micro strain. As

discussed in the preceding section, a change in micro strain is small till 0.2 mm

flank wear hence the change in standard deviation is also small till 0.2 mm flank

wear as shown in Figure 7.34c. It is noted that the magnitude of mean

acceleration, g (Figure 7.34a and Figure 7.34b) decreases with increase in cutting

speed. This is due to the fact that increase in cutting speed decreases the cutting

force. In addition, the same effect is observed in the response of strain gauge

(Figure 7.34c).

Skewness (equation 6.33) is a measure of asymmetry (time domain in the

present case) in the data around the mean. Skewness of the data set indicates

whether deviations from the mean are going to be positive or negative. It is

conventionally defined in such a way as to make it non-dimensional. It is a pure

number that characterizes only the shape of the distribution. Skewness (level of
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a

b

c
Figure 6.43: (a) Relationship between mean value of vibration signal and flank

wear in cutting direction (b) Relationship between mean value of vibration signal

and flank wear in feed direction (c) Relationship between mean value of micro

strain signal and flank wear (depth of cut = 4 mm and feed rate = 300 mm/min).
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a

b

c
Figure 6.44: (a) Relationship between standard deviation of vibration signal and

flank wear in cutting direction (b) Relationship between standard deviation of

vibration signal and flank wear in feed direction (c) Relationship between strain

gauge signal and flank wear (depth of cut = 4 mm and feed rate = 300 mm/min).
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asymmetry) increases with increase in flank wear level due to rubbing action of

the cutting tool at the flank face as shown in Figure 7.35. Skewness of vibration

amplitude increases more in case of sensor 2 (feed direction) as compared to

sensor 1 (cutting direction) and their values are positive. This indicates the

higher mean value of the amplitude of vibration with increase in flank wear

which is clear from Figure 7.35a and Figure 7.35b. Further, positive skewness

also indicates that the mean value is smaller than the median and modal values

of the amplitude of vibration. Similar behaviour is seen for the case of variation

in micro strain with flank wear (Figure 7.35c). It is noted that the magnitude of

acceleration, g (Figure 7.35a) decreases with increase in cutting speed. This is

due to decrease in cutting force due as the cutting speed increases. In addition,

the same effect is observed in the response of strain gauge (Figure 7.35c).

Kurtosis (equation 6.34) is also a non-dimensional quantity and, in the present

reference, it is a measure of peak value of time domain data. The peaks of

vibration and strain level increase with increase in flank wear level (due to

increase in cutting force which obviously increases the peak value of the time

domain data) as shown in Figure 7.36. It is noted that the magnitude of

acceleration, g (Figure 7.36a) decreases with increase in cutting speed. This is

due to decrease in cutting force (if cutting speed increases it obviously decreases

the cutting force). Similar effect is observed in the response of strain gauge

(Figure 7.36c).

It is seen (Table 6.17) that the variation in kurtosis value is smaller when the

flank wear changes from 0 to 0.5 mm in the cutting direction (Figure 7.36a). But

its value changes substantially in case of feed direction (example, sensor 2 and

Figure 7.36b by a factor of 4). It also indicates that at higher flank wear the

degree of peakedness of the amplitude of vibration increases. Further, the

frequency of distribution [73] of amplitude of vibration is platykurtic ( β2 < 3) in

case of sensor 1 and leptokurtic (β2 > 3 ) in case of sensor 2. It means that the

amplitude of vibration in cutting direction (sensor 1) does not change



Artificial Neural Network Design 162

a

b

c
Figure 6.45: (a) Relationship between skewness of vibration signal and flank wear

in cutting direction (b) Relationship between skewness of vibration signal and

flank wear in feed direction (c) Relationship between skewness of strain gauge

signal and flank wear(depth of cut = 4 mm and feed rate = 300 mm/min).
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substantially (distributions curve is flat) while changes substantially in the case

of feed direction (sensor 2).

6.9.2 Statistical Inputs for Neural Network

These four statistical parameters, namely, (i) Mean, (ii) Standard deviation, (iii)

Skewness and (iv) kurtosis were used as input vectors to the neural networks. For

each level of flank wear, the number of terms in the input vector is 12 as given

in Table 6.17. These terms are a combination of outputs of two accelerometers

signals (4+4) and one strain gauge signals (4) as shown in Figure 6.47.

Networks are trained for five levels of flank wear ranging from 0 to 0.5 and

target vectors of neural networks are fixed for training as listed in Table 6.18.

In Table 6.18 , first column (1 0 0 0 0) indicates the level of flank wear 0.5 mm.

Similarly second, third, fourth, and fifth columns indicate the levels of flank wear

as 0.4, 0.3, 0.2 and 0 mm, respectively.

Table 6.18: Typical target vectors

Flank wears in mm 0.5 0.4 0.3 0.2 0.0

1 0 0 0 0

Target 0 1 0 0 0

vectors 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

6.9.3 Network Training and Testing

Different architectures were tried and finally a four layer feed forward back

propagation neural network with one input layer, two hidden layers and

one-output layer was adopted. The training is carried out for five levels of flank

wear (0, 0.2, 0.3, 0.4 and 0.5 mm) using 110 experimental data sets. The
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a

b

c
Figure 6.46: (a) Relationship between kurtosis of vibration signal and flank wear

in cutting direction (b) Relationship between kurtosis of vibration signal and

flank wear in feed direction (c) Relationship between kurtosis of strain gauge

signal and flank wear (depth of cut = 4 mm and feed rate = 300 mm/min).
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a b

c d

e .

Figure 6.47: Typical input training vectors for (a) new cutting tool (b) 0.2 mm

flank wear cutting tool (c) 0.3 mm flank wear cutting tool (d) 0.4 mm flank wear

cutting tool (e) 0.5 mm flank wear cutting tool. Cutting speed = 500 m/min, feed

rate = 500 mm/min and depth of cut = 5 mm. Sesnor 1 - Accelerometer in cutting

direction , Sesnor 2 - Accelerometer in feed direction and Sesnor 3 - Strain gauge
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remaining 25 experimental data were reserved for testing the neural network

model.

After fixing the number of layers to four, the number of neurons in the

individual layers are varied to obtain an optimum network. The convergence

patterns of these networks (Trial No 5 and 8) are shown in Figure 6.48a and

Figure 6.48b. The desired level of accuracy (= 1 × 10−4) is generally obtained

within 15000 epochs for all the architectures as shown in Table 6.19.

Best results were obtained with logsig and tansig activation functions, the

trainrp is found to be most robust training algorithm in terms of accuracy and

time taken (Table 6.19, Trial No 5).

After training, the same neural network architecture is tested with new data.

The testing results are shown in Tables 6.20 and 6.21 for Trial No 5 and 8. These

Tables 6.20 and 6.21 results and earlier results clearly indicate that with

statistical data as input, the ANN is able to identify the state of flank wear of a

given tool.

6.10 Remarks

Development of ANN models for tool failure prediction have been described in

this chapter. Frequency domain and statistical input based ANNs have been

developed. Probabilistic Networks based on Bayes’ Rule have also been

developed. Experimental data of measured acceleration, g and micro strain are

utilized to train the network models. Trained models are used in predicting

flank wear and chipping failure for various different cutting conditions. The

developed prediction system is found to be capable of accurate in predicting

tool failure - both flank wear and chipping, for the range it has been trained.

All data, experimentally obtained and collected from the sensors, have been

used to create ANN models. On the basis of prediction accuracy, these models

can be extended and extrapolate for other machining conditions.
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a

b

Figure 6.48: (a) Convergence pattern of back propagation networks for Trial No

5. (b) Convergence pattern of back propagation networks for Trial No 8.
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Table 6.19: Neural network architecture of time domain analysis

Trial

No

Network

architecture

Epochs Transfer functions Comments prediction

%

1 100-100-50-5 14600 logsig,logsig, logsig,tansig Converged 100

2 100-100-75-5 15000 logsig,logsig, logsig,tansig Not converged 97.8

3 100-100-100-5 15000 logsig,logsig, logsig,tansig Not converged 94.3

4 125-125-50-5 10777 logsig,logsig, logsig,tansig Converged 100

5* 125-125-100-5 6258 logsig,logsig, logsig,tansig Converged 100

6 150-150-50-5 8315 logsig,logsig, logsig,tansig Converged 100

7 200-100-50-5 15000 logsig,logsig, logsig,tansig Not converged 87.8

8 200-200-75-5 5090 logsig,logsig, logsig,tansig Converged 100

9 200-200-100-5 4800 logsig,logsig, logsig,tansig Converged 100

10 250-200-100-5 8315 logsig,logsig, logsig,tansig Not converged 81.5

11 250-250-100-5 13292 logsig,logsig, logsig,tansig Converged 100

12 250-250-250-5 2030 logsig,logsig, logsig,tansig Converged 100

13 275-275-150-5 4939 logsig,logsig, logsig,tansig Converged 100

14 300-250-200-5 15000 logsig,logsig, logsig,tansig Not converged 80.1

15 300-300-50-5 15000 logsig,logsig, logsig,tansig Not converged 78.2

16 300-300-100-5 15000 logsig,logsig, logsig,tansig Not converged 75.2

17 300-300-150-5 4634 logsig,logsig, logsig,tansig Converged 100
*Trial No 5, the architecture of 125-125-100-5 gives best convergence, less computation

time and response of training is good enough to classify the flank wear at various levels.
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Table 6.20: Typical output for test data for Trial No 5 (125-125-100-5)
Flank wears in mm
0.5 0.4 0.3 0.2 0.0

Output vectors

0.998 0.001 0.000 0.001 0.001
0.007 0.999 0 0.000 0.001 0.001
0.009 0.001 0.999 0.001 0.001
0.000 0.010 0.000 1 0.010
0.000 0.001 0.001 0.001 0.999

Table 6.21: Typical output for test data for Trial No 8 (200-200-75-5)
Flank wears in mm

0.5 0.4 0.3 0.2 0.0
Output 0.9947 0.0165 0.1000 0.1000 0.0888
vectors -0.0914 0.9418 0.0999 -0.1000 -0.0873

-0.0631 0.0303 0.9214 -0.0046 -0.0957
-0.0774 -0.0891 -0.0712 1.0000 -0.0826
0.0421 0.0528 -0.0986 -0.0804 0.9725

In the design of neural networks, our major concern was to obtain a good

generalization capability. These ANN models may also utilized to determine

optimum number of neurons in hidden layer and its structure optimisation.



Chapter 7

Conclusions

7.1 Conclusions

The development of practical and reliable condition monitoring methods for

detecting flank wear and chipping failure in turning operation is essential for

realization of intelligent and flexible manufacturing systems. In this thesis, the

problem of detection of flank wear and chipping failure in turning operation has

been studied using vibration and strain measurement methods. Based on the

findings of this thesis, following conclusions are drawn:

• An artificial wear can be created in a controlled manner by using EDM

process, which emulates the real flank wear and chipped off cutting edge

where machining responses are similar to actual flank wear and chipped

off cutting edge.

• Vibration and strain monitoring during turning operation can be useful for

predicting flank wear as well as chipping failure. For this purpose, four

statistical moments are estimated using time domain data and then they

are used in ANN analysis as the input data. Four layer ANN response then

can be used to classify the flank wear at different levels. Frequency domain

analysis has also been carried out and features were fed in to six layer ANN

170
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as input data. The responses of ANN are good enough to classify the flank

wear and chipping failure at different levels.

• From the experimental results the amplitude of vibration in cutting

direction (sensor 1) does not change substantially (kurtosis distribution

curve is flat) while it does change in feed direction (sensor 2) (kurtosis

distribution curve is more like a normal distribution). This indicates that

the responses of vibration signals in feed direction are superior to cutting

direction which classifies the flank wear levels as per the condition

monitoring aspects.

• Neural networks model has been developed and used to predict the

condition of the cutting tool. On the basis of the condition of the cutting

tool this neural network model may be further employed to develop an

adaptive feed back system to control the machining process.

• The neural networks code was tested employing various training

algorithms available in the Matlab toolbox and finally optimum

architecture (Trial No 15) was selected. Among these algorithms, the

trainrp was found to be most robust and easily applicable to classify the

flank wear levels while using logsig and tansig as activation functions.

• A multiple regression model has been developed for flank wear level

prediction as well as chipping failure. The model have been validated with

the experimental results.

• The amplitude of vibration (acceleration, g) and amplitude of strain are

more for the chipped off tool when compared with flank wear tool.

• The response of accelerometer signals and strain gauge bridge signals were

studied with different machining conditions. The acceleration, g increases

with increasing feed rate and depth of cut and decreases with increase in
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cutting speed. The strain increases with increase in feed rate and depth of

cut and decreases with increase in cutting speed.

7.2 Future work

The present study involving the following

• Creation of artificial wear which emulates real flank wear and cutting edge

chipping wear

• Development of computer based instrumentation to condition, record and

analyse the signals obtained from strain gauge bridge using LabVIEW.

• Development of an algorithm to extract the relevant features of signals

obtained from strain gauge bridge and accelerometer sensors and

compiling them to form a training vector.

• Development of ANN code to train and test the neural network.

• Development of Regression models to correlate the different levels of wear

with machining input parameters.

• Development of FEM model to find the natural frequencies of cutting tool

with different modes.

In this study, ANN models have been developed to predict the condition of a

cutting tool to predict whether it has flank wear or a chipped off cutting edge.

To develop such models, features are extracted from strain and vibration signals

at the natural frequency of cutting tool. These features are used as input vectors

for training the neural network. Apart from these features, a few more

frequencies can be extracted from the signals. In future these data may be useful

for validating the ANN models. The following work can be carried out in future

for further improvements.
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• Old worn-out DNMG inserts can be collected and a prepare CAD model of

real life failed tool bit geometry using 3D scanner or CMM (Reverse

engineering) representing actual flank wear, can be prepared.

• EDM process can be employed to create identical flank wear, chipping

failure and crater wear geometry on test tools.

• In future, all three types of tool wear- flank, crater and chipping failure can

be considered simultaneously and their interactions can be studied using

solid tools or non grooved DNMG inserts i.e. DNMG inserts have a

configuration with out chip breaker.

• Cutting fluids may also be used with DNMG inserts fitted with cutting tools

after proper sealing of sensors from the cutting fluids.

While considerable research has been explined in several papers to

implement ANN concepts in cutting tool condition monitoring system. Still

there is no solution for finding the number of layers, number neurons for

particular type of wear. Future research should be engaged in evolutionary

algorithms for structure optimisation. The problem of how to find an optimal

architecture is currently one of the central issues of research on neural networks.

Though a lot of work has been done there is still a demand for a reliable and

universal monitoring system. Such a system would involve two inherent

components: hardware and software. Presently, the hardware component is

more developed and many sensors and transducers have been employed in

industrial conditions. However, the software component requires improvement,

as there are more difficult and complex tasks yet to be solved.
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